

TABLE OF CONTENTS

Stormwater Management Summary Checklist for Stormwater Report Illicit Discharge Statement Runoff Summary

Existing Conditions AnalysisAt	ttachment A
Existing Drainage Exhibit	••••
Runoff Curve Numbers	••••
Hydraflow Hydrographs Model	••••
Existing Conditions Hydrograph Summary Chart	••••
Individual Hydrographs for 100 year storm	••••

Proposed Conditions Analysis	Attachment B
Proposed Drainage & BMP Location Exhibit	•••••
Runoff Curve Numbers	
Hydraflow Hydrographs Model	•••••
Proposed Conditions Hydrograph Summary Chart	•••••
Individual Hydrographs for 100 year storm	•••••

Best Management Practices Attachment C
Required Dedicated Recharge Volume & Drain Down Time
Cultec Subsurface Recharge Chambers and Stage Storage Charts
TSS Removal Calculation Worksheets
Contech TSS Calculations
Contech Water Quality Flow Rate Calculations
Stormwater Maintenance System Operation and Maintenance Plan & Long Term
Pollution Prevention Plan
Operation and Maintenance Log

Pipe SizingAtta	chment D
Pipe Sizing Exhibit	
Rational Method	
Manning's Pipe Sizing Calculator	

scellaneous Attachmei	nt E
NOAA Atlas 14 Point Precipitation Frequency Estimates	
Intensity Duration Frequency Curve	
Required Recharge Volume	
Infiltration Rates	
NRCS Soil Survey Map	
Geotechnical Boring Logs	
Redevelopment Checklist	

INTRODUCTION

The purpose of this report is to analyze the predevelopment and post-development drainage conditions for the proposed redevelopment project and to demonstrate that the project will have no negative impacts on the surrounding properties and resource areas. The design incorporates many best management practices recommended by the Massachusetts Stormwater Management Handbook and incorporates design standards recommended by the Town of Ayer Stormwater Management Regulations.

EXISTING SITE

The approximately 12 acre site is located at 1 Industrial Way, Ayer, MA. The property is bounded by Westford Road to the North, Industrial Way to the east, existing industrial developments to the south, industrial rail service tracks to southeast, and existing industrial development to the east.

Currently all runoff from the site drains to a series of catch basins and manholes that all drain into the Town of Ayer Drain Line that runs through the site within an easement. The Drain line conveys runoff from this site, Industrial Ave, and adjacent industrial sites, under the rail road tracks and into the wetlands. Runoff from the wetland area discharges under the MBTA rail tracks and ultimately enters Bennets Brook and Spectacle Pond approximately 2/3 of a mile from the site. We have reviewed the Town of Ayer Stormwater Management Program(SWMP), last revised June 2021 and the EPA My Waterways web site. Both Bennets Brook and Spectacle Pond listed 303(d) impaired. Bennets Brook is impared with Ecoli and Spectacle Pond is impared with multiple nonnative plants.

In order to model pre and post runoff characteristics the site is split into three water sheds based on the areas for redevelopment and discharge point to drainage easement.

Area 1 consists of the eastern portion of the site that consists of a wooded area close to Westford Road, Parking and a loading areas on the east side of the site. Runoff from this area enters the drainage easement in Industrial Ave through a 24" concrete pipe. This 24" pipe is Design Point #1. The eastern portion of the site is where the office and manufacturing areas of the facility will be expanded.

Area 2 Consist of Northern/North eastern part of the site and consists of wooded area close to Westford Road, the northerly portion of the existing building, and potion of the loading areas located on the west side of the site. Runoff from this area enters an existing catch basin that drains into the drainage easement in a 24" and 30" pipe. The last catch basin in this area is Design Point #2. This area of site will be expanded with the warehouse component of the addition and 6 loading docks.

Area 3 consists of the remaining portion of the existing building and site where little to not work is proposed. Runoff from this area enters the drainage easement between areas 1 and 2.

NRCS soils maps, geotechnical boring data, development plans from adjacent properties have been reviewed to assess hydrologic soils groups and to estimate seasonal high groundwater. The site is currently very active and confirmatory test pits will be performed prior to construction.

See Existing Drainage Exhibit in Attachment A.

PROPOSED SITE

The proposed redevelopment consists of a building expansion of 77,360+/- s.f., addition of 8 loading docks, reconfiguring the car parking lot, and the addition of one curb cut on Industrial Way.

A stormwater management system has been designed to comply with Massachusetts Department of Environmental Protection Standards for stormwater management and the Town of Ayer Stormwater Management Bylaw and its implementing Stormwater Regulations.

The Stormwater management system will incorporate many Best Management Practices (BMPs), which will include deep sump catch basins with water quality elbows, proprietary water quality devices, subsurface recharge systems, reduction of pavement surfaces, and an operations and maintenance program designed to treat, recharge, and mitigate stormwater runoff generated from the proposed development of the site.

See Proposed Conditions Drainage Exhibit in Attachment B.

STORMWATER MANAGEMENT STANDARDS

The following is a discussion of the Massachusetts Stormwater Management Standards

STANDARD 1: NO NEW UNTREATED DISCHARGES

The proposed project has been designed for no new untreated discharges from the site. The new and redeveloped pavement areas will be treated by proprietary water quality devices followed by subsurface recharge systems. As noted above the site drainage system ties into an existing drainage system so no new outfalls are proposed.

STANDARD 2: PEAK RATE ATTENUATION

Existing and developed sites were modeled using Hydraflow Hydrographs Extension for Autodesk Civil 3D Version 2020 by AutoDesk, Inc.. This computer software uses the TR55/TR20 tabular method of computing peak flows, hydrograph addition, and pond routing. The curve numbers for the existing conditions analysis were determined using soil survey maps which show hydrologic group B, D and unrated soils. See soil survey map and geotechnical boring logs in **Attachment E**. For the purposes of the proposed conditions analysis, a conservative estimate of time of concentration of 6 minutes was assumed for the proposed conditions analysis.

As can be seen from the summary chart below, the peak flows from the design storm on the site will be reduced as a result of this project. Peak flow mitigation will be provided within subsurface recharge systems.

The entire TR55 analysis is included in Attachment A (existing conditions) and B (proposed conditions) of this report.

STANDARD 3: RECHARGE

The project site contains hydrologic group B according to the NRCS soil maps and test pits conducted by North East Geotechnical, Inc.. Based on DEP guidelines for recharge, the required recharge volume for hydrologic group B soils is 0.35". The total increase in impervious area is 45,384 s.f. This includes a 75,377 s.f. building expansion and a reduction in pavement area of 29,993 s.f.

Under DEP Policy Required minimum dedicated Recharge Volume using the Static Method is = 45,384+/- s.f. X 0.35 in. X 1 ft/ 12 in. = 1,323 cubic feet

However, the redeveloped also require recharge to the maximum extent practical. The Town of Ayer Stormwater Regulations require 0.8 of dedicated recharge volume within redevelopment areas. The total impervious areas within the redevelopment area = 183,833 s.f.

Under the Town of Ayer Stormwater Mangement Regulations the required recharge volume is 183,833 s.f. x 0.8" x 1ft/12in = 12,255 cu. ft.

The dedicated recharge volume has been provided in the 3 subsurface recharge systems with a total of 13,602 cu.ft below the lowest invert. This is equivalent to 0.88" of volume of the redeveloped areas and 5.4" over the increase in impervious areas. Clearly this amount of recharge exceeds required by DEP requirement and meets the Town of Ayer Stormwater Management Bylaw and Regulations requirement of 0.8" inch of recharge volume for redevelopment. See **Attachment C** for recharge volumes and recharge calculations.

STANDARD 4: STORMWATER QUALITY

Stormwater runoff from the site will be enhanced by means of a number of Best Management Practices (BMP's), which have been designed to comply with the DEP Stormwater Management Guidelines. In order to achieve a Total Suspended Solids (TSS) removal rate of 80%, the following BMP's will be incorporated:

- o Pavement sweeping and maintenance program
- o Deep sump hooded catch basins
- o Proprietary water quality devices
- o Subsurface recharge chambers
- o Reduction of Paved Surfaces

The total TSS removal is expected to be greater than 80%. See TSS Removal in **Attachment C**.

STANDARD 5: Land Uses with Higher Potential Pollutant Loads (LUHPPL's)

The proposed project is not considered a land use with higher potential pollutant loads.

STANDARD 6: CRITICAL AREAS

The site is located within a Zone II aquifer and groundwater protection district and therefore requires 44% TSS removal prior to a recharge BMP.

STANDARD 7: REDEVELOPMENT

The proposed project is a redevelopment. See Redevelopment Checklist in Attachment E.

STANDARD 8: CONSTRUCTION PERIOD POLLUTION PREVENTION AND EROSION CONTROL

An erosion control plan is incorporated into the plan set. A detailed phasing plan will be established when a site contractor is consulted. At that time a construction phasing plan and the associated Stormwater Pollution Prevention Plan will be prepared and submitted to the Town of Ayer and the EPA prior to construction.

STANDARD 9: OPERATIONS AND MAINTENANCE PLAN

The Stormwater Management System Operation and Maintenance Plan and Long Term Pollution Prevention Plan, Operations and Maintenance Log, and BMP Location Map are provided in **Attachment C**.

CONCLUSION

An extensive stormwater management system has been designed for the project. The stormwater management system has been designed to comply with current (DEP) standards and will incorporate a number of Best Management Practices ("BMP's") that will ensure that the runoff will be treated prior to leaving the site.

The construction of the stormwater management system will ensure that stormwater runoff from this site will be of high quality and that there will be no adverse impacts on surrounding properties or resource areas.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Loud Noell

Digitally signed by David Noel Kelly P.E. DN: cn=David Noel Kelly P.E., o=Kelly Engineering GRoup, Inc., ou, email=dkelly@kellyengineeringgrou p.com, c=US Date: 2022.12.05 17:31:21 -05'00'

Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Mix of New Development and Redevelopment

Checklist (continued)

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

\boxtimes	No disturbance to any Wetland Resource Areas
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
	Reduced Impervious Area (Redevelopment Only)
	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	Credit 1
	Credit 2
	Credit 3
	Use of "country drainage" versus curb and gutter conveyance and pipe
	Bioretention Cells (includes Rain Gardens)
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
	Water Quality Swale
	Grass Channel
	Green Roof
	Other (describe):
Sta	ndard 1: No Now Untroated Discharges

Standard 1: No New Untreated Discharges

 \boxtimes No new untreated discharges

- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Checklist (continued)

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

 \boxtimes

Soil Analysis provided.

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

Static	Simple Dynamic
--------	----------------

Dynamic Field¹

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.

\boxtimes	Recharge BMPs h	ave been sized to	infiltrate the	Required	Recharge '	Volume.
-------------	-----------------	-------------------	----------------	----------	------------	---------

- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- \boxtimes Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
- Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Checklist (continued)

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Checklist (co	ntinued)
---------------	----------

Standard 4: Water Quality (continued)

- The BMP is sized (and calculations provided) based on:
 - ☐ The ½" or 1" Water Quality Volume or
 - The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
- The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
- A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

- The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
- The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted **prior to** the discharge of stormwater to the post-construction stormwater BMPs.
- The NPDES Multi-Sector General Permit does *not* cover the land use.
- LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
- All exposure has been eliminated.
- All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list.
- The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Checklist (continued)

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

Limited Project	t
-----------------	---

Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.

Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area

- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.
- The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Checklist (continued)

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

ILLICIT DISCHARGE STATEMENT

This statement has been prepared to comply with Stormwater Management Standard #10 as referenced in the Massachusetts Stormwater Handbook, Volume One, Chapter One, Page 25. This handbook has been issued by the Massachusetts Department of Environmental Protection for compliance with revised Regulations for Wetlands 310 CMR 10.00.

As detailed in the Site Development Plans accompanying this application this project will not involve any illicit discharge to the stormwater management system. Furthermore, to the best of my knowledge there are no illicit discharges to the stormwater management system of the existing site.

Owner and Responsible Party for Operating and Managing the site:

James King, Engineering Project Manager Nasoya Foods USA, LLC 1 New England Way. Ayer, MA 01432 714-515-0977

James Kim

Date

RUNOFF SUMMARY

Peak Runoff Chart

Design Point #1(AREA 1)

Storm	Existing	Proposed	Difference
(yr, inches)	(cfs)	(cfs)	(cfs)
2,3.15	7.63	3.34	-4.29
10,4.85	15.62	12.32	-3.3
25,5.91	20.82	16.23	-4.59
50,6.70	24.74	19.48	-5.26
100,7.55	28.99	22.9	-6.09

Design Point #2(AREA 2)

<u>Storm</u>	Existing	Proposed	Difference
(yr, inches)	(cfs)	(cfs)	(cfs)
2,3.15	3.43	3.43	0
10,4.85	7.78	5.94	-1.84
25,5.91	10.72	9.38	-1.34
50,6.70	12.96	12.02	-0.94
100,7.55	15.4	14.53	-0.87

Total Site Runoff

<u>Storm</u>	Existing	Proposed	Difference
(yr, inches)	(cfs)	(cfs)	(cfs)
2,3.13	24.89	15.81	-9.08
10,4.82	45.71	36.94	-8.77
25,5.87	59.15	49.42	-9.73
50,6.70	69.27	58.43	-10.84
100,7.50	80.19	68.28	-11.91

KELLY ENGINEERING GROUP, INC.

Zero Campanelli Drive-Braintree-MA 02184 Phone 781 843 4333

Attachment A Existing Conditions

Runoff Curve Number and Runoff

Name:	Nasoya Foods	By:	DAM	Date:	11/10/22
Location :	1 New England Way, MA				
Description:	Existing Conditions - Area 1				

Circle One: <u>Pre</u> or Post

Runoff Curve Number (CN):

Surface Description	Soil Name; hydrologic group; hydrologic condition	CN	s.f.	Product of
				CN x Area
Building		98	0	0
Impervious		98	112176	1.1E+07
Gravel	Hydrologic Group A	76	0	0
Wetlands	Flagged Wetlands	77	0	0
Grass	Hydrologic Group B; GOOD Condition	61	42192	2573712
Woods	Hydrologic Group A; Fair Condition	55	49077	2699235
		Totals =	203445.00	1.6E+07
		Acres =	4.6704545	

CN or C (weighted) = total product/total area =

80.0

Reference:

Urban Hydrology for Small Watersheds Technical Release 55, Soil Conservation Service U.S. Department of Agriculture, June 1986

Runoff Curve Number and Runoff

Name:	Nasoya Foods	By:	DAM	Date:	11/10/22
Location :	1 New England Way, MA				
Description:	Existing Conditions - Area 2				

Circle One: <u>Pre</u> or Post

Runoff Curve Number (CN):

Surface Description	Soil Name; hydrologic group; hydrologic condition	CN	s.f.	Product of
				CN x Area
Building		98	33384	3271632
Impervious		98	17897	1753906
Gravel	Hydrologic Group A	76	0	0
Wetlands	Flagged Wetlands	77	0	0
Grass	Hydrologic Group B; GOOD Condition	61	34988	2134268
Woods	Hydrologic Group A; Fair Condition	55	32538	1789590
		Totals =	118807.00	8949396
		Acres =	2.7274334	

CN or C (weighted) = total product/total area =

75.3

Reference:

Urban Hydrology for Small Watersheds Technical Release 55, Soil Conservation Service U.S. Department of Agriculture, June 1986

Runoff Curve Number and Runoff

Name:	Nasoya Foods	By:	DAM	Date:	11/10/22
Location :	1 New England Way, MA				
Description:	Existing Conditions - Area 3				

Circle One: <u>Pre</u> or Post

Runoff Curve Number (CN):

Surface Description	Soil Name; hydrologic group; hydrologic condition	CN	s.f.	Product of
				CN x Area
Building		98	84239	8255422
Impervious		98	102036	9999528
Gravel	Hydrologic Group A	76	0	0
Wetlands	Flagged Wetlands	77	0	0
Grass	Hydrologic Group B; GOOD Condition	61	21249	1296189
Woods	Hydrologic Group A; Fair Condition	55	0	0
		Totals =	207524.00	2E+07
		Acres =	4.7640955	

CN or C (weighted) = total product/total area =

94.2

Reference:

Urban Hydrology for Small Watersheds Technical Release 55, Soil Conservation Service U.S. Department of Agriculture, June 1986

Watershed Model Schematic

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd.	Hydrograph	Inflow	Peak Outflow (cfs)								Hydrograph	
NO.	(origin)	nya(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description	
1	SCS Runoff			7.630			15.62	20.82	24.74	28.99	Area 1	
2	SCS Runoff			3.431			7.783	10.72	12.96	15.40	AREA 2	
3	SCS Runoff			13.89			22.45	27.73	31.64	35.84	AREA 3	
4	Combine	1, 2, 3		24.89			45.71	59.15	69.27	80.19	Total Site Runoff	

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	7.630	1	725	23,729				Area 1
2	SCS Runoff	3.431	1	725	10,996				AREA 2
3	SCS Runoff	13.89	1	724	44,856				AREA 3
4	Combine	24.89	1	725	79,581	1, 2, 3			Total Site Runoff
Exi	Existing.gpw				Return P	eriod: 2 Ye	ar	Friday, 11 /	18 / 2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	15.62	1	725	48,145				Area 1
2	SCS Runoff	7.783	1	725	24,024				AREA 2
3	SCS Runoff	22.45	1	724	74,583				AREA 3
4	Combine	45.71	1	725	146,751	1, 2, 3			Total Site Runoff
4	Combine	45.71		725	146,751	1, 2, 3			Total Site Runoff
Exi	sting.gpw				Return P	eriod: 10 Y	'ear	Friday, 11 /	18 / 2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	20.82	1	725	64,522				Area 1
2	SCS Runoff	10.72	1	725	33,019				AREA 2
3	SCS Runoff	27.73	1	724	93,277				AREA 3
4	Combine	59.15	1	724	190,818	1, 2, 3			Total Site Runoff
Existing.gpw					Return P	eriod: 25 Y	⊥ ′ear	Friday, 11 /	18 / 2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	24.74	1	725	77,069				Area 1
2	SCS Runoff	12.96	1	725	39,993				AREA 2
3	SCS Runoff	31.64	1	724	107,249				AREA 3
4	Combine	69.27	1	724	224,312	1, 2, 3			Total Site Runoff
Existing.gpw					Return P	eriod: 50 Y	ear	Friday, 11 /	18 / 2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description	
1	SCS Runoff	28.99	1	724	90,803				Area 1	
2	SCS Runoff	15.40	1	725	47,686				AREA 2	
3	SCS Runoff	35.84	1	724	122,309				AREA 3	
4	Combine	80.19	1	724	260,798	1, 2, 3			Total Site Runoff	
4		ou. 19			200,/98	1, 2, 3				
Existing.gpw				Return Period: 100 Year			Friday, 11 / 18 / 2022			

Hydrograph Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 1

Hydrograph type	= SCS Runoff	Peak discharge	= 28.99 cfs
Storm frequency	= 100 yrs	Time to peak	= 724 min
Time interval	= 1 min	Hyd. volume	= 90,803 cuft
Drainage area	= 4.671 ac	Curve number	= 79.9
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 5.90 min
Total precip.	= 7.55 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 1

Area 1

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.400 = 50.0 = 3.15 = 36.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 3.91	+	0.00	+	0.00	=	3.91
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 88.00 = 16.00 = Unpave =6.45	d	73.00 1.80 Paved 2.73		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.23	+	0.45	+	0.00	=	0.67
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 1.77 = 2.35 = 0.60 = 0.013 =7.34		3.14 3.14 0.30 0.013 6.28		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})301.0		231.0		0.0		
Travel Time (min)	= 0.68	+	0.61	+	0.00	=	1.30
Total Travel Time, Tc							5.90 min

Hydrograph Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 2

AREA 2

Hydrograph type	= SCS Runoff	Peak discharge	= 15.40 cfs
Storm frequency	= 100 yrs	Time to peak	= 725 min
Time interval	= 1 min	Hyd. volume	= 47,686 cuft
Drainage area	= 2.727 ac	Curve number	= 75.3
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 6.10 min
Total precip.	= 7.55 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Friday, 11 / 18 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 2

AREA 2

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.400 = 50.0 = 3.15 = 40.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 3.75	+	0.00	+	0.00	=	3.75
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 46.00 = 15.60 = Unpave =6.37	d	146.00 1.90 Unpave 2.22	d	127.00 0.80 Paved 1.82		
Travel Time (min)	= 0.12	+	1.09	+	1.16	=	2.38
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							6.10 min

Hydrograph Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 3

AREA 3

Hydrograph type	= SCS Runoff	Peak discharge	= 35.84 cfs
Storm frequency	= 100 yrs	Time to peak	= 724 min
Time interval	= 1 min	Hyd. volume	= 122,309 cuft
Drainage area	= 4.764 ac	Curve number	= 94.2
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 7.55 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Friday, 11 / 18 / 2022
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 4

Total Site Runoff

Combine 100 yrs 1 min 1, 2, 3	Peak discharge=Time to peak=Hyd. volume=Contrib. drain. area=	 80.19 cfs 724 min 260,798 cuft 12.162 ac
1, 2, 5		12.102 40
	Combine 100 yrs 1 min 1, 2, 3	CombinePeak discharge=100 yrsTime to peak=1 minHyd. volume=1, 2, 3Contrib. drain. area=

Friday, 11 / 18 / 2022

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Friday, 11 / 18 / 2022

Return Period	Intensity-Duration-Frequency Equation Coefficients (FHA)							
(Yrs)	В	D	E	(N/A)				
1	0.0000	0.0000	0.0000					
2	42.4120	9.2500	0.7886					
3	0.0000	0.0000	0.0000					
5	56.7673	11.0000	0.7948					
10	67.9290	12.0000	0.8012					
25	85.5668	13.2500	0.8118					
50	97.8027	13.7500	0.8148					
100	112.8269	14.5000	0.8222					

File name: Sample.IDF

Intensity = B / (Tc + D)^E

Return Period (Yrs)	Intensity Values (in/hr)											
	5 min	10	15	20	25	30	35	40	45	50	55	60
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	5.22	4.12	3.43	2.96	2.61	2.35	2.14	1.96	1.82	1.70	1.59	1.50
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	6.27	5.05	4.26	3.70	3.29	2.97	2.71	2.49	2.32	2.16	2.03	1.92
10	7.02	5.71	4.84	4.23	3.76	3.40	3.11	2.87	2.66	2.49	2.34	2.21
25	8.10	6.65	5.68	4.98	4.44	4.02	3.68	3.39	3.16	2.95	2.78	2.62
50	8.98	7.40	6.34	5.56	4.97	4.50	4.12	3.81	3.54	3.31	3.11	2.94
100	9.81	8.13	6.98	6.14	5.49	4.98	4.56	4.22	3.92	3.67	3.45	3.26

Tc = time in minutes. Values may exceed 60.

	Precip. file name: Sample.pcp							
	Rainfall Precipitation Table (in)							
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
SCS 24-hour	2.50	3.15	0.00	3.30	4.85	5.91	6.70	7.55
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-1st	0.00	0.00	0.00	2.75	0.00	0.00	0.00	0.00
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-Indy	0.00	0.00	0.00	2.75	0.00	0.00	0.00	0.00
Custom	0.00	0.00	0.00	2.80	0.00	0.00	0.00	0.00

KELLY ENGINEERING GROUP, INC.

Zero Campanelli Drive-Braintree-MA 02184 Phone 781 843 4333

Attachment B Proposed Conditions

Name:	Nasoya Foods	By:	DAM	Date:	11/10/22
Location :	1 New England Way, MA				
Description:	Proposed Conditions - Area 1	-			

Circle One: Pre or Post

Runoff Curve Number (CN):

Surface Description	Soil Name; hydrologic group; hydrologic condition	CN	s.f.	Product of
				CN x Area
Building		98	53585	5251330
Impervious		98	68907	6752886
Gravel	Hydrologic Group A	76	0	0
Wetlands	Flagged Wetlands	77	0	0
Grass	Hydrologic Group B; GOOD Condition	61	27186	1658346
Woods	Hydrologic Group A; Fair Condition	55	21864	1202520
		Totals =	171542.00	1.5E+07
		Acres =	3.9380624	

CN or C (weighted) = total product/total area =

86.7

Reference:

Name:	Nasoya Foods	By:	DAM	Date:	11/10/22
Location :	1 New England Way, MA				
Description:	Proposed Conditions - Area 2a	_			

Circle One: Pre or Post

Runoff Curve Number (CN):

Surface Description	Soil Name; hydrologic group; hydrologic condition	CN	s.f.	Product of
				CN x Area
Building		98	37700	3694600
Impervious		98	5280	517440
Gravel	Hydrologic Group A	76	0	0
Wetlands	Flagged Wetlands	77	0	0
Grass	Hydrologic Group B; GOOD Condition	61	5858	357338
Woods	Hydrologic Group A; Fair Condition	55	14944	821920
		Totals =	63782.00	5391298
		Acres =	1.4642332	

CN or C (weighted) = total product/total area =

84.5

Reference:

Name:	Nasoya Foods	By:	DAM	Date:	11/10/22
Location :	1 New England Way, MA				
Description:	Proposed Conditions - Area 2b	_			

Circle One: Pre or Post

Runoff Curve Number (CN):

Surface Description	Soil Name; hydrologic group; hydrologic condition	CN	s.f.	Product of
				CN x Area
Building		98	0	0
Impervious		98	18361	1799378
Gravel	Hydrologic Group A	76	0	0
Wetlands	Flagged Wetlands	77	0	0
Grass	Hydrologic Group B; GOOD Condition	61	8254	503494
Woods	Hydrologic Group A; Fair Condition	55	20371	1120405
		Totals =	46986.00	3423277
		Acres =	1.0786501	

CN or C (weighted) = total product/total area =

72.9

Reference:

Name:	Nasoya Foods	By:	DAM	Date:	11/10/22
Location :	1 New England Way, MA	_		_	
Description:	Proposed Conditions - Area 2c	-			

Circle One: Pre or Post

Runoff Curve Number (CN):

Surface Description	Soil Name; hydrologic group; hydrologic condition	CN	s.f.	Product of
				CN x Area
Building		98	30902	3028396
Impervious		98	15210	1490580
Gravel	Hydrologic Group A	76	0	0
Wetlands	Flagged Wetlands	77	0	0
Grass	Hydrologic Group B; GOOD Condition	61	5133	313113
Woods	Hydrologic Group A; Fair Condition	55	0	0
		Totals =	51245.00	4832089
		Acres =	1.17642332	

CN or C (weighted) = total product/total area =

94.3

Reference:

Name:	Nasoya Foods	By:	DAM	Date:	11/10/22
Location :	1 New England Way, MA				
Description:	Proposed Conditions - Area 3	_			

Circle One: Pre or Post

Runoff Curve Number (CN):

Surface Description	Soil Name; hydrologic group; hydrologic condition	CN	s.f.	Product of
				CN x Area
Building		98	30902	3028396
Impervious		98	15210	1490580
Gravel	Hydrologic Group A	76	0	0
Wetlands	Flagged Wetlands	77	0	0
Grass	Hydrologic Group B; GOOD Condition	61	5133	313113
Woods	Hydrologic Group A; Fair Condition	55	0	0
		Totals =	51245.00	4832089
		Acres =	1,17642332	•

CN or C (weighted) = total product/total area =

94.3

Reference:

Watershed Model Schematic

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Project: pROPSOED.gpw

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd.	Hydrograph	Inflow	Peak Outflow (cfs)							Hydrograph	
No.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff			8.820			15.95	20.44	23.78	27.36	AREA 1
2	Reservoir	1		3.340			12.32	16.23	19.48	22.90	Recharge System #1
4	SCS Runoff			2.984			5.599	7.263	8.508	9.845	AREA 2A
5	Reservoir	4		0.787			3.949	5.416	6.388	8.466	Recharge System #2
6	SCS Runoff			1.160			2.806	3.938	4.808	5.762	AREA 2B
7	Combine	5, 6		1.195			6.306	8.850	10.65	13.22	Into Recharge System 3
8	Reservoir	7		0.443			3.204	5.375	6.790	8.449	Recharge System #3
10	SCS Runoff			3.439			5.550	6.851	7.817	8.853	AREA 2c
11	Combine	8, 10		3.439			5.936	9.376	12.02	14.53	Total to Design Point #2
13	SCS Runoff			12.32			20.51	25.56	29.31	33.31	AREA 3
15	Combine	2, 11, 13,		15.81			36.94	49.42	58.53	68.28	Total Site Runoff
<u> </u>											

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	8.820	1	725	27,225				AREA 1
2	Reservoir	3.340	1	740	18,921	1	221.27	11,430	Recharge System #1
4	SCS Runoff	2.984	1	725	9,193				AREA 2A
5	Reservoir	0.787	1	748	5,766	4	221.26	4,300	Recharge System #2
6	SCS Runoff	1.160	1	725	3,820				AREA 2B
7	Combine	1.195	1	744	9,586	5, 6			Into Recharge System 3
8	Reservoir	0.443	1	793	7,918	7	218.86	3,039	Recharge System #3
10	SCS Runoff	3.439	1	724	11,117				AREA 2c
11	Combine	3.439	1	724	19,034	8, 10			Total to Design Point #2
13	SCS Runoff	12.32	1	724	38,998				AREA 3
15	Combine	15.81	1	725	76,953	2, 11, 13,			Total Site Runoff
pR	OPSOED.gpv	v			Return P	eriod: 2 Ye	er	Wednesday	y, 11 / 16 / 2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	15.95	1	724	50,068				AREA 1
2	Reservoir	12.32	1	728	41,765	1	221.86	14,857	Recharge System #1
4	SCS Runoff	5.599	1	725	17,435				AREA 2A
5	Reservoir	3.949	1	729	14,008	4	221.86	5,641	Recharge System #2
6	SCS Runoff	2.806	1	725	8,706				AREA 2B
7	Combine	6.306	1	727	22,714	5, 6			Into Recharge System 3
8	Reservoir	3.204	1	745	21,046	7	219.45	6,025	Recharge System #3
10	SCS Runoff	5.550	1	724	18,459				AREA 2c
11	Combine	5.936	1	725	39,505	8, 10			Total to Design Point #2
13	SCS Runoff	20.51	1	724	66,674				AREA 3
15	Combine	36.94	1	725	147,944	2, 11, 13,			Total Site Runoff
pR	DPSOED.gpw	 ,			Return P	eriod: 10 Y	/ear	Wednesday	v, 11 / 16 / 2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	20.44	1	724	64,847				AREA 1
2	Reservoir	16.23	1	728	56,543	1	222.12	16,206	Recharge System #1
4	SCS Runoff	7.263	1	724	22,825				AREA 2A
5	Reservoir	5.416	1	729	19,398	4	222.23	6,300	Recharge System #2
6	SCS Runoff	3.938	1	725	12,136				AREA 2B
7	Combine	8.850	1	726	31,534	5, 6			Into Recharge System 3
8	Reservoir	5.375	1	739	29,866	7	219.84	7,765	Recharge System #3
10	SCS Runoff	6.851	1	724	23,076				AREA 2c
11	Combine	9.376	1	726	52,942	8, 10			Total to Design Point #2
13	SCS Runoff	25.56	1	724	84,190				AREA 3
15	Combine	49.42	1	725	193,674	2, 11, 13,			Total Site Runoff
nR		,			Return P	eriod: 25 Y	/ear	Wednesday	2 11 / 16 / 2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	23.78	1	724	76,008				AREA 1
2	Reservoir	19.48	1	728	67,705	1	222.36	17,051	Recharge System #1
4	SCS Runoff	8.508	1	724	26,913				AREA 2A
5	Reservoir	6.388	1	729	23,485	4	222.55	6,719	Recharge System #2
6	SCS Runoff	4.808	1	725	14,814				AREA 2B
7	Combine	10.65	1	726	38,299	5, 6			Into Recharge System 3
8	Reservoir	6.790	1	738	36,631	7	220.16	8,966	Recharge System #3
10	SCS Runoff	7.817	1	724	26,526				AREA 2c
11	Combine	12.02	1	726	63,157	8, 10			Total to Design Point #2
13	SCS Runoff	29.31	1	724	97,311				AREA 3
15	Combine	58.53	1	726	228,173	2, 11, 13,			Total Site Runoff
pR	OPSOED.gpw	,			Return P	eriod: 50 Y	/ear	Wednesday	v, 11 / 16 / 2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	27.36	1	724	88,115				AREA 1
2	Reservoir	22.90	1	728	79,811	1	222.60	17,870	Recharge System #1
4	SCS Runoff	9.845	1	724	31,359				AREA 2A
5	Reservoir	8.466	1	728	27,931	4	223.41	7,088	Recharge System #2
6	SCS Runoff	5.762	1	725	17,781				AREA 2B
7	Combine	13.22	1	728	45,712	5, 6			Into Recharge System 3
8	Reservoir	8.449	1	736	44,044	7	220.65	10,090	Recharge System #3
10	SCS Runoff	8.853	1	724	30,244				AREA 2c
11	Combine	14.53	1	726	74,289	8, 10			Total to Design Point #2
13	SCS Runoff	33.31	1	724	111,473				AREA 3
15	Combine	68.28	1	726	265,572	2, 11, 13,			Total Site Runoff
pR	DPSOED.gpv	v	1	1	Return P	eriod: 100	Year	Wednesday	y, 11 / 16 / 2022

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Return	Intensity-Du	uration-Frequency E	quation Coefficients	(FHA)
(Yrs)	В	D	E	(N/A)
1	0.0000	0.0000	0.0000	
2	42.4120	9.2500	0.7886	
3	0.0000	0.0000	0.0000	
5	56.7673	11.0000	0.7948	
10	67.9290	12.0000	0.8012	
25	85.5668	13.2500	0.8118	
50	97.8027	13.7500	0.8148	
100	112.8269	14.5000	0.8222	

File name: Sample.IDF

Intensity = B / (Tc + D)^E

Return Intensity Values (in/hr)											
5 min	10	15	20	25	30	35	40	45	50	55	60
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5.22	4.12	3.43	2.96	2.61	2.35	2.14	1.96	1.82	1.70	1.59	1.50
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6.27	5.05	4.26	3.70	3.29	2.97	2.71	2.49	2.32	2.16	2.03	1.92
7.02	5.71	4.84	4.23	3.76	3.40	3.11	2.87	2.66	2.49	2.34	2.21
8.10	6.65	5.68	4.98	4.44	4.02	3.68	3.39	3.16	2.95	2.78	2.62
8.98	7.40	6.34	5.56	4.97	4.50	4.12	3.81	3.54	3.31	3.11	2.94
9.81	8.13	6.98	6.14	5.49	4.98	4.56	4.22	3.92	3.67	3.45	3.26
	5 min 0.00 5.22 0.00 6.27 7.02 8.10 8.98 9.81	5 min 10 0.00 0.00 5.22 4.12 0.00 0.00 6.27 5.05 7.02 5.71 8.10 6.65 8.98 7.40 9.81 8.13	5 min 10 15 0.00 0.00 0.00 5.22 4.12 3.43 0.00 0.00 0.00 6.27 5.05 4.26 7.02 5.71 4.84 8.10 6.65 5.68 8.98 7.40 6.34 9.81 8.13 6.98	5 min 10 15 20 0.00 0.00 0.00 0.00 5.22 4.12 3.43 2.96 0.00 0.00 0.00 0.00 6.27 5.05 4.26 3.70 7.02 5.71 4.84 4.23 8.10 6.65 5.68 4.98 8.98 7.40 6.34 5.56 9.81 8.13 6.98 6.14	5 min 10 15 20 25 0.00 0.00 0.00 0.00 0.00 0.00 5.22 4.12 3.43 2.96 2.61 0.00 0.00 0.00 0.00 0.00 6.27 5.05 4.26 3.70 3.29 7.02 5.71 4.84 4.23 3.76 8.10 6.65 5.68 4.98 4.44 8.98 7.40 6.34 5.56 4.97 9.81 8.13 6.98 6.14 5.49	5 min 10 15 20 25 30 0.00 0.00 0.00 0.00 0.00 0.00 5.22 4.12 3.43 2.96 2.61 2.35 0.00 0.00 0.00 0.00 0.00 0.00 6.27 5.05 4.26 3.70 3.29 2.97 7.02 5.71 4.84 4.23 3.76 3.40 8.10 6.65 5.68 4.98 4.44 4.02 8.98 7.40 6.34 5.56 4.97 4.50 9.81 8.13 6.98 6.14 5.49 4.98	5 min 10 15 20 25 30 35 0.00	Intensity Values (in/hr)5 min101520253035400.000.000.000.000.000.000.000.005.224.123.432.962.612.352.141.960.000.000.000.000.000.000.000.006.275.054.263.703.292.972.712.497.025.714.844.233.763.403.112.878.106.655.684.984.444.023.683.398.987.406.345.564.974.504.123.819.818.136.986.145.494.984.564.22	Intensity Values (in/hr)5 min10152025303540450.000.000.000.000.000.000.000.000.005.224.123.432.962.612.352.141.961.820.000.000.000.000.000.000.000.000.006.275.054.263.703.292.972.712.492.327.025.714.844.233.763.403.112.872.668.106.655.684.984.444.023.683.393.168.987.406.345.564.974.504.123.813.549.818.136.986.145.494.984.564.223.92	5 min1015202530354045500.000.000.000.000.000.000.000.000.000.005.224.123.432.962.612.352.141.961.821.700.000.000.000.000.000.000.000.000.000.006.275.054.263.703.292.972.712.492.322.167.025.714.844.233.763.403.112.872.662.498.106.655.684.984.444.023.683.393.162.958.987.406.345.564.974.504.123.813.543.319.818.136.986.145.494.984.564.223.923.67	Intensity Values (in/hr)5 min101520253035404550550.000.000.000.000.000.000.000.000.000.000.005.224.123.432.962.612.352.141.961.821.701.590.000.000.000.000.000.000.000.000.000.006.275.054.263.703.292.972.712.492.322.162.037.025.714.844.233.763.403.112.872.662.492.348.106.655.684.984.444.023.683.393.162.952.788.987.406.345.564.974.504.123.813.543.313.119.818.136.986.145.494.984.564.223.923.673.45

Tc = time in minutes. Values may exceed 60.

	-					Precip.	file name: S	Sample.pcp			
		Rainfall Precipitation Table (in)									
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr			
SCS 24-hour	2.50	3.15	0.00	3.30	4.85	5.91	6.70	7.55			
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Huff-1st	0.00	0.00	0.00	2.75	0.00	0.00	0.00	0.00			
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Huff-Indy	0.00	0.00	0.00	2.75	0.00	0.00	0.00	0.00			
Custom	0.00	0.00	0.00	2.80	0.00	0.00	0.00	0.00			

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 1

AREA 1

Hydrograph type	= SCS Runoff	Peak discharge	= 27.36 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.07 hrs
Time interval	= 1 min	Hyd. volume	= 88,115 cuft
Drainage area	= 3.938 ac	Curve number	= 86.7
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 7.55 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

9

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 2

Recharge System #1

Hydrograph type	= Reservoir	Peak discharge	= 22.90 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.13 hrs
Time interval	= 1 min	Hyd. volume	= 79,811 cuft
Inflow hyd. No.	= 1 - AREA 1	Max. Elevation	= 222.60 ft
Reservoir name	= RECHARGE 1	Max. Storage	= 17,870 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Pond No. 1 - RECHARGE 1

Pond Data

BOndisatoriages is hoasted leon user 9 de 16 inte dRiver uses pan = 2.54 x 4.33 ft, Barrel Len = 309.00 ft, No. Barrels = 5, Slope = 0.00%, Headers = No **Encasement -**Invert elev. = 219.30 ft, Width = 4.83 ft, Height = 3.54 ft, Voids = 40.00%

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	219.30	n/a	0	0
0.35	219.65	n/a	1,057	1,057
0.71	220.01	n/a	1,891	2,948
1.06	220.36	n/a	2,460	5,408
1.42	220.72	n/a	2,415	7,824
1.77	221.07	n/a	2,338	10,162
2.12	221.42	n/a	2,223	12,385
2.48	221.78	n/a	2,056	14,440
2.83	222.13	n/a	1,801	16,242
3.19	222.49	n/a	1,279	17,521
3.54	222.84	n/a	1,057	18,578
3.55	222.85	n/a	372	18,950
4.00	223.30	n/a	50	19,000
5.00	224.30	n/a	50	19,050

Culvert / Orifice Structures

[A] [B] [C] [A] [B] [C] [D] [PrfRsr] = 15.00 0.00 0.00 0.00 = 1.25 0.00 0.00 0.00 Rise (in) Crest Len (ft) = 15.00 0.00 0.00 0.00 = 220.80 0.00 Span (in) Crest El. (ft) 0.00 0.00 No. Barrels = 2 0 0 0 Weir Coeff. = 3.33 3.33 3.33 3.33 = 220.80 0.00 0.00 0.00 Invert El. (ft) Weir Type = Rect ---------= 0.00 0.00 0.00 0.00 Multi-Stage Length (ft) = No No No No Slope (%) = 0.00 0.00 0.00 n/a N-Value .013 = .013 .013 n/a Orifice Coeff. = 0.60 0.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Wet area) Multi-Stage = n/a No No No TW Elev. (ft) = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 4

AREA 2A

Hydrograph type	= SCS Runoff	Peak discharge	= 9.845 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.07 hrs
Time interval	= 1 min	Hyd. volume	= 31,359 cuft
Drainage area	= 1.464 ac	Curve number	= 84.5
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 7.55 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

12

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 5

Recharge System #2

Hydrograph type	= Reservoir	Peak discharge	= 8.466 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.13 hrs
Time interval	= 1 min	Hyd. volume	= 27,931 cuft
Inflow hyd. No.	= 4 - AREA 2A	Max. Elevation	= 223.41 ft
Reservoir name	= RECHARGE 2	Max. Storage	= 7,088 cuft

Storage Indication method used.

13

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Pond No. 2 - RECHARGE 2

Pond Data

Bûnûltstortages is hasse di en user 9 de drives van Seiner Seine

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	219.30	n/a	0	0
0.35	219.65	n/a	401	401
0.71	220.01	n/a	718	1,119
1.06	220.36	n/a	934	2,052
1.42	220.72	n/a	917	2,969
1.77	221.07	n/a	887	3,856
2.12	221.42	n/a	844	4,700
2.48	221.78	n/a	780	5,480
2.83	222.13	n/a	684	6,164
3.19	222.49	n/a	486	6,649
3.54	222.84	n/a	401	7,050
3.55	222.85	n/a	10	7,060
4.00	223.30	n/a	25	7,085
5.00	224.30	n/a	25	7,110

Culvert / Orifice Structures

[A] [B] [C] [A] [B] [C] [D] [PrfRsr] = 8.00 10.00 0.00 0.00 = 0.00 0.00 0.00 0.00 Rise (in) Crest Len (ft) = 8.00 10.00 0.00 0.00 0.00 0.00 Span (in) Crest El. (ft) = 0.00 0.00 No. Barrels = 2 1 0 0 Weir Coeff. = 3.33 3.33 3.33 3.33 = 220.90 221.20 0.00 0.00 Invert El. (ft) Weir Type = -------------= 0.00 0.00 0.00 0.00 Multi-Stage Length (ft) = No No No No Slope (%) = 0.00 0.00 0.00 n/a N-Value .013 = .013 .013 n/a Orifice Coeff. = 0.60 0.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Wet area) Multi-Stage = n/a No No No TW Elev. (ft) = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 6

AREA 2B

Hydrograph type	= SCS Runoff	Peak discharge	= 5.762 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.08 hrs
Time interval	= 1 min	Hyd. volume	= 17,781 cuft
Drainage area	= 1.079 ac	Curve number	= 72.9
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 7.55 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 7

Into Recharge System 3

Hydrograph type Storm frequency	= Combine = 100 vrs	Peak discharge Time to peak	= 13.22 cfs = 12 13 hrs
Time interval	= 1 min	Hyd. volume	= 45,712 cuft
Inflow hyds.	= 5, 6	Contrib. drain. area	= 1.079 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 8

Recharge System #3

Hydrograph type	= Reservoir	Peak discharge	= 8.449 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.27 hrs
Time interval	= 1 min	Hyd. volume	= 44,044 cuft
Inflow hyd. No.	= 7 - Into Recharge System 3	Max. Elevation	= 220.65 ft
Reservoir name	= RECHARGE 3	Max. Storage	= 10,090 cuft

Storage Indication method used.

17

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Pond No. 4 - RECHARGE 3

Pond Data

BGndisstoragesisibæstedlem us2redteffiftedRivadwesspan = 1.71 x 3.00 ft, Barrel Len = 82.00 ft, No. Barrels = 21, Slope = 0.00%, Headers = No **Encasement -**Invert elev. = 218.00 ft, Width = 3.25 ft, Height = 2.71 ft, Voids = 40.00%

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	218.00	n/a	0	0	
0.27	218.27	n/a	607	607	
0.54	218.54	n/a	737	1.344	
0.81	218.81	n/a	1,441	2,785	
1.08	219.08	n/a	1,417	4,202	
1.36	219.35	n/a	1,368	5,570	
1.63	219.63	n/a	1,290	6,860	
1.90	219.90	n/a	1,171	8,031	
2.17	220.17	n/a	968	8,999	
2.44	220.44	n/a	626	9,625	
2.71	220.71	n/a	607	10,232	
2.72	220.72	n/a	1	10.233	
3.00	221.00	n/a	17	10,250	
4.00	222.00	n/a	50	10,300	
4.30	222.30	n/a	15	10.315	

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 8.00	0.00	12.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 8.00	0.00	12.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 2	0	1	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 218.60	0.00	219.00	0.00	Weir Type	=			
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	/ Wet area)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 10

AREA 2c

Hydrograph type	= SCS Runoff	Peak discharge	= 8.853 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.07 hrs
Time interval	= 1 min	Hyd. volume	= 30,244 cuft
Drainage area	= 1.176 ac	Curve number	= 94.3
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 7.55 in	Distribution	= Type III
Storm duration	= 24 hrs	Shape factor	= 484

19

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 11

Total to Design Point #2

Hydrograph type Storm frequency	 Combine 100 yrs 1 min 	Peak discharge Time to peak	= 14.53 cfs = 12.10 hrs = 74.280 cuft
Inflow hyds.	= 8, 10	Contrib. drain. area	= 1.176 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 13

Hydrograph type =	= SCS Runoff	Peak discharge	= 33.31 cfs
Storm frequency =	= 100 yrs	Time to peak	= 12.07 hrs
Time interval	= 1 min	Hyd. volume	= 111,473 cuft
Drainage area =	= 4.505 ac	Curve number	= 92.1
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= User	Time of conc. (Tc)	= 6.00 min
Total precip. =	= 7.55 in	Distribution	= Type III
Storm duration =	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 15

Total Site Runoff

Time interval= 1 minHyd. volume= 265,572 cuftInflow hyds.= 2, 11, 13Contrib. drain. area= 4.505 ac	Hydrograph type	= Combine	Peak discharge	= 68.28 cfs
	Storm frequency	= 100 yrs	Time to peak	= 12.10 hrs
	Time interval	= 1 min	Hyd. volume	= 265,572 cuft
	Inflow hyds.	= 2, 11, 13	Contrib. drain. area	= 4.505 ac

22

KELLY ENGINEERING GROUP, INC.

Zero Campanelli Drive-Braintree-MA 02184 Phone 781 843 4333

Attachment C Best Management Practices

RECHARGE SYSTEM CALCULATIONS(Static Method):

Total Site Impervious Areas:

Existing Impervious Area = 349,732 S.F. Proposed Impervious Area = 395,116 S.F. Increase in Impervious = 45,384 s.f.

Min Required Dedicated Recharge Volume = 45,384 s.f *0.35"/12 (MA DEP-HSG B Soils) = 1,324 cu.ft

Required Dedicated Recharge Volume = 45,384 s.f *0.8"/12 (Ayer Stormwater Bylaw) = 3,026 cu.ft

Recharge System #1(To Design Point #1)

Total Contributing Impervious Area(redeveloped) = 122,492 s.f. Increase in impervious to Design Point #1=10,316 s.f.

Min Required Dedicated Recharge Volume = 10,316 s.f *0.35"/12 (MA DEP-HSG B Soils) = 301 cu.ft

Required Dedicated Recharge Volume = 122,492 s.f *0.8"/12 (Ayer Stormwater Bylaw) = **8,166 cu.ft**

Provided Dedicated Recharge Volume = 8,535 cu.ft. @ elevation 220.8

Drain Down Time

Bottom Contact Area = 7,995 s.f. Recharge Rate = 7,995 s.f. * 1.03 in/hr *1/12 = 686 cu.ft/ hr Drain Time for recharge volume = 8,535 cu.ft / 686 cu.ft/hr = **12 hours**

Recharge System #2 and #3(To Design Point #2-from watershed 2a and 2b)

Total Contributing Impervious Area (redeveloped) = 61,341 s.f. Increase in Impervious = 35,068 S.F. (Note area #3+2c has reduction of 21,104 s.f. Impervious)

Min Required Dedicated Recharge Volume = 35,068 s.f *0.35"/12 (MA DEP-HSG B Soils) = 1,023cu.ft

Required Dedicated Recharge Volume = $61,341 \text{ s.f } *0.8^{"/12}$ (Ayer Stormwater Bylaw) = **4,089 cu.ft**

Provided Dedicated Recharge Volume = 3,435 cu.ft. @ elevation 220.6(system 2) Provided Dedicated Recharge Volume = 1,632 cu.ft. @ elevation 218.6(system 3) Provided Dedicated Recharge Volume = 5,067 cu.ft.

Drain Down Time(System #2)

Bottom Contact Area = 3,165 s.f.Recharge Rate = 3,165 s.f. * 1.03 in/hr *1/12 = 271 cu.ft/ hrDrain Time for recharge volume = 3,435 cu.ft / 271 cu.ft/hr = 12.7 hours

Drain Down Time(System #3)

Bottom Contact Area = 5,970 s.f. Recharge Rate = 5,970 s.f. * 1.03 in/hr *1/12 = 512 cu.ft/ hr Drain Time for recharge volume = 1,632 cu.ft / 512 cu.ft/hr = **3.2 hours**

CULTEC Stormwater Design Calculator

te:	November 01, 2022		
Project Information:			
	Recharger 3 Chamber Spe	330XLHD cifications	
	Height	30.5	inches
	Width	52.0 8 50	inches
Б	nstalled Length	7.00	feet
Bare	Chamber Volume	52.21	cu. feet
nstall	ed Chamber Volume	79.26	cu. feet

Materials List

Recharger 3			
Total Number of Chambers Required	220	pieces	
Separator Row Chambers	44	pieces	Separator Row Qty Included in Total
Starter Chambers	5	pieces	
Intermediate Chambers	210	pieces	
End Chambers	5	pieces	
HVLV FC-24 Feed Connectors	8	pieces	Based on 2 Internal Manifolds
CULTEC No. 410 Non-Woven Geotextile	2553	sq. yards	
CULTEC No. 4800 Woven Geotextile	376	feet	
Stone	621	cu. yards	

Bed Detail

Bed Layout Information									
Number of Rows Wide	5	pieces							
Number of Chambers Long	44	pieces							
Chamber Row Width	23.67	feet							
Chamber Row Length	309.50	feet							
Bed Width	25.67	feet							
Bed Length	311.50	feet							
Bed Area Required	7995.17	sq. feet							
Length of Separator Row	309.50	feet							

Bed detail for reference only. Not project specific. Not to scale.

Conceptual graphic only. Not job specific.

	Cross Section Table Reference		
А	Depth of Stone Base	6.0	inches
в	Chamber Height	30.5	inches
с	Depth of Stone Above Units	6.0	inches
D	Depth of 95% Compacted Fill	10.0	inches
E	Max. Depth Allowed Above the Chamber	12.00	feet
F	Chamber Width	52.0	inches
G	Center to Center Spacing	4.83	feet
н	Effective Depth	3.54	feet
1	Bed Depth	4.38	feet

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Pond No. 1 - RECHARGE 1

Pond Data

BGndisstortagesisitbæstedlem us2et9dbdfiftedRivaduxeSpan = 2.54 x 4.33 ft, Barrel Len = 309.00 ft, No. Barrels = 5, Slope = 0.00%, Headers = No **Encasement** -Invert elev. = 219.30 ft, Width = 4.83 ft, Height = 3.54 ft, Voids = 40.00%

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	219.30	n/a	0	0
0.35	219.65	n/a	1,057	1,057
0.71	220.01	n/a	1,891	2,948
1.06	220.36	n/a	2,460	5,408
1.42	220.72	n/a	2,415	7,824
1.77	221.07	n/a	2,338	10,162
2.12	221.42	n/a	2,223	12,385
2.48	221.78	n/a	2,056	14,440
2.83	222.13	n/a	1,801	16,242
3.19	222.49	n/a	1,279	17,521
3.54	222.84	n/a	1,057	18,578
3.55	222.85	n/a	372	18,950
4.00	223.30	n/a	50	19,000
5.00	224.30	n/a	50	19,050

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 15.00	0.00	0.00	0.00	Crest Len (ft)	= 1.25	0.00	0.00	0.00
Span (in)	= 15.00	0.00	0.00	0.00	Crest El. (ft)	= 220.80	0.00	0.00	0.00
No. Barrels	= 2	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 220.80	0.00	0.00	0.00	Weir Type	= Rect			
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage /	Storage / I	Discharge 1	Table		,	()	()				× .	, ,	5 ()
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	219.30	0.00				0.00						0.000
0.04	106	219.34	0.00				0.00						0.000
0.07	211	219.37	0.00				0.00						0.000
0.11	317	219.41	0.00				0.00						0.000
0.14	423	219.44	0.00				0.00						0.000
0.18	528	219.48	0.00				0.00						0.000
0.21	634	219.51	0.00				0.00						0.000
0.25	740	219.55	0.00				0.00						0.000
0.28	846	219.58	0.00				0.00						0.000
0.32	951	219.62	0.00				0.00						0.000
0.35	1,057	219.65	0.00				0.00						0.000
0.39	1,246	219.69	0.00				0.00						0.000
0.42	1,435	219.72	0.00				0.00						0.000
0.46	1,624	219.76	0.00				0.00						0.000
0.50	1,813	219.80	0.00				0.00						0.000
0.53	2,002	219.83	0.00				0.00						0.000
0.57	2,191	219.87	0.00				0.00						0.000
0.60	2,381	219.90	0.00				0.00						0.000
0.64	2,570	219.94	0.00				0.00						0.000
0.67	2,759	219.97	0.00				0.00						0.000
0.71	2,948	220.01	0.00				0.00						0.000
0.74	3,194	220.04	0.00				0.00						0.000
0.78	3,440	220.08	0.00				0.00						0.000
0.81	3,686	220.11	0.00				0.00						0.000
0.85	3,932	220.15	0.00				0.00						0.000
0.88	4,178	220.18	0.00				0.00						0.000
0.92	4,424	220.22	0.00				0.00						0.000
0.96	4,670	220.26	0.00				0.00						0.000
0.99	4,916	220.29	0.00				0.00						0.000
RECHARGE 1 Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
1.03	5,162	220.33	0.00				0.00						0.000
1.06	5,408	220.36	0.00				0.00						0.000
1.10	5,650	220.40	0.00				0.00						0.000
1.13	5,891	220.43	0.00				0.00						0.000
1.17	6 374	220.47	0.00				0.00						0.000
1.20	6 6 1 6	220.50	0.00				0.00						0.000
1.27	6.858	220.57	0.00				0.00						0.000
1.31	7,099	220.61	0.00				0.00						0.000
1.35	7,341	220.65	0.00				0.00						0.000
1.38	7,582	220.68	0.00				0.00						0.000
1.42	7,824	220.72	0.00				0.00						0.000
1.45	8,057	220.75	0.00				0.00						0.000
1.49	8 5 2 5	220.79	0.00				0.00				_		0.000
1.56	8,759	220.86	0.03 ic				0.06						0.091
1.59	8,993	220.89	0.09 ic				0.12						0.204
1.63	9,227	220.93	0.16 ic				0.19						0.354
1.66	9,460	220.96	0.26 ic				0.28						0.538
1.70	9,694	221.00	0.38 ic				0.37						0.753
1.73	9,928	221.03	0.53 ic				0.47						1.000
1.//	10,162	221.07	0.69 IC				0.58						1.276
1.81	10,384	221.11	0.88 IC 1.08 ic				0.70						1.579
1.88	10,000	221.14	1.00 ic				0.05						2 262
1.91	11.051	221.21	1.54 ic				1.10						2.641
1.95	11,273	221.25	1.80 ic				1.24						3.043
1.98	11,496	221.28	2.07 ic				1.39						3.464
2.02	11,718	221.32	2.36 ic				1.55						3.908
2.05	11,940	221.35	2.66 ic				1.71						4.369
2.09	12,162	221.39	2.97 ic				1.88						4.848
2.12	12,385	221.42	3.29 IC				2.05						5.346
2.10	12,590	221.40	3.04 IC				2.23						6 393
2.10	13 001	221.53	4 33 ic				2.41						6 931
2.27	13,207	221.57	4.70 ic				2.79						7.486
2.30	13,413	221.60	5.06 ic				2.98						8.048
2.34	13,618	221.64	5.44 ic				3.18						8.621
2.37	13,824	221.67	5.81 ic				3.39						9.202
2.41	14,029	221.71	6.19 ic				3.60						9.789
2.44	14,235	221.74	6.57 IC				3.81						10.38
2.40	14,440	221.70	0.94 IC 7 31 ic				4.03						11.97
2.55	14,801	221.85	7.67 ic				4.47						12.14
2.58	14,981	221.88	8.02 ic				4.70						12.72
2.62	15,161	221.92	8.35 ic				4.93						13.29
2.65	15,341	221.96	8.67 ic				5.17						13.84
2.69	15,521	221.99	8.96 ic				5.41						14.37
2.73	15,701	222.03	9.21 ic				5.65						14.86
2.76	15,881	222.06	9.42 IC				5.90 6.15						15.32
2.00	16,001	222.10	9.00 IC 9.94 ic				6.40						16.33
2.00	16 369	222.10	10 18 ic				6 66						16.84
2.90	16,497	222.20	10.42 ic				6.92						17.34
2.94	16,625	222.24	10.66 ic				7.18						17.83
2.97	16,753	222.27	10.89 ic				7.45						18.33
3.01	16,881	222.31	11.11 ic				7.72						18.83
3.04	17,009	222.34	11.33 ic				7.99						19.32
3.08	17,137	222.38	11.55 IC				8.27						19.81
3.1Z 3.15	17,200	222.42	11.70 IC				0.04						20.30
3 19	17,535	222 49	12 17 ic				9 11						21.79
3.22	17.627	222.52	12.37 ic				9.40						21.77
3.26	17,732	222.56	12.57 ic				9.69						22.26
3.29	17,838	222.59	12.77 ic				9.99						22.75
3.33	17,944	222.63	12.96 ic				10.28						23.24
3.36	18,049	222.66	13.15 ic				10.58						23.73
3.40	18,155	222.70	13.33 ic				10.89						24.22
3.43 2.17	10,201	222.13	13.52 IC				11.19						24.71
3.47	18 472	222.11	13.88 ic				11.50						25.20
3.54	18.578	222.84	14.06 ic				12.13						26.18

RECHARGE 1 Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
3.54	18,615	222.84	14.06 ic				12.14						26.20
3.54	18,652	222.84	14.07 ic				12.15						26.21
3.54	18,689	222.84	14.07 ic				12.16						26.23
3.54	18,727	222.84	14.08 ic				12.16						26.24
3.54	18,764	222.85	14.08 ic				12.17						26.25
3.55	18,801	222.85	14.09 ic				12.18						26.27
3.55	18,838	222.85	14.09 ic				12.19						26.28
3.55	18,876	222.85	14.10 ic				12.20						26.30
3.55	18,913	222.85	14.10 ic				12.21						26.31
3.55	18,950	222.85	14.11 ic				12.22						26.32
3.60	18,955	222.90	14.33 ic				12.62						26.95
3.64	18,960	222.94	14.54 ic				13.03						27.57
3.69	18,965	222.99	14.76 ic				13.44						28.20
3.73	18,970	223.03	14.97 ic				13.86						28.83
3.78	18,975	223.07	15.18 ic				14.28						29.46
3.82	18,980	223.12	15.38 ic				14.71						30.09
3.87	18,985	223.16	15.59 ic				15.14						30.73
3.91	18,990	223.21	15.79 ic				15.57						31.36
3.95	18,995	223.26	15.98 ic				16.01						32.00
4.00	19,000	223.30	16.18 ic				16.45						32.63
4.10	19,005	223.40	16.61 ic				17.45						34.06
4.20	19,010	223.50	17.02 ic				18.47						35.49
4.30	19,015	223.60	17.43 ic				19.50						36.93
4.40	19,020	223.70	17.82 ic				20.56						38.38
4.50	19,025	223.80	18.21 ic				21.63						39.84
4.60	19,030	223.90	18.59 ic				22.72						41.31
4.70	19,035	224.00	18.96 ic				23.83						42.79
4.80	19,040	224.10	19.33 ic				24.95						44.28
4.90	19,045	224.20	19.68 ic				26.10						45.78
5.00	19,050	224.30	20.04 ic				27.26						47.29

...End

CULTEC Stormwater Design Calculator

Date:	November 02, 2022]	
	Project Info	rmation:			Calculations F
				PECHARGER 330YI HD	
					Des la la seconda de Cal
	Recharger 3 Chamber Spe	330XLHD cifications			Breakdown of Sto Recharger 330XLHD
	Recharger 3 Chamber Spe Height	330XLHD cifications 30.5	inches		Breakdown of Sto Recharger 330XLHD Within Chambers
	Recharger 3 Chamber Spec Height Width	330XLHD cifications 30.5 52.0	inches inches		Breakdown of Sto Recharger 330XLHD Within Chambers Within Feed Connectors
	Recharger 3 Chamber Spee Height Width Length	330XLHD cifications 30.5 52.0 8.50	inches inches feet		Breakdown of Sto Recharger 330XLHD Within Chambers Within Feed Connectors Within Stone Within Stone
11	Recharger 3 Chamber Spee Height Width Length stalled Length	330XLHD cifications 30.5 52.0 8.50 7.00	inches inches feet feet		Breakdown of Sto Recharger 330XLHD Within Chambers Within Feed Connectors Within Stone Total Storage Provided
lı Bare	Recharger 3 Chamber Spe Height Width Length Istalled Length Chamber Volume	330XLHD cifications 30.5 52.0 8.50 7.00 52.21	inches inches feet feet cu. feet		Breakdown of Sto Recharger 330XLHD Within Chambers Within Feed Connectors Within Stone Total Storage Provided Total Storage Required

Materials List

Recharger 3			
Total Number of Chambers Required	80	pieces	
Separator Row Chambers	40	pieces	Separator Row Qty Included in Total
Starter Chambers	2	pieces	
Intermediate Chambers	76	pieces	
End Chambers	2	pieces	
HVLV FC-24 Feed Connectors	2	pieces	Based on 2 Internal Manifolds
CULTEC No. 410 Non-Woven Geotextile	1169	sq. yards	
CULTEC No. 4800 Woven Geotextile	318	feet	
Stone	260	cu. yards	

Bed Detail

Bed Layout Information										
Number of Rows Wide	2	pieces								
Number of Chambers Long	40	pieces								
Chamber Row Width	9.17	feet								
Chamber Row Length	281.50	feet								
Bed Width	11.17	feet								
Bed Length	283.50	feet								
Bed Area Required	3165.75	sq. feet								
Length of Separator Row	281.50	feet								

Bed detail for reference only. Not project specific. Not to scale.

Conceptual graphic only. Not job specific.

	Cross Section Table Reference		
А	Depth of Stone Base	6.0	inches
в	Chamber Height	30.5	inches
С	Depth of Stone Above Units	6.0	inches
D	Depth of 95% Compacted Fill	10.0	inches
E	Max. Depth Allowed Above the Chamber	12.00	feet
F	Chamber Width	52.0	inches
G	Center to Center Spacing	4.83	feet
н	Effective Depth	3.54	feet
1	Bed Depth	4.38	feet

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Pond No. 2 - RECHARGE 2A

Pond Data

BGndissonagesisibassedievn us2er9de0fifteedRivseluxe3span = 2.54 x 4.33 ft, Barrel Len = 283.50 ft, No. Barrels = 2, Slope = 0.00%, Headers = Yes **Encasement -**Invert elev. = 219.30 ft, Width = 4.83 ft, Height = 3.54 ft, Voids = 40.00%

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	219.30	n/a	0	0
0.35	219.65	n/a	401	401
0.71	220.01	n/a	718	1,119
1.06	220.36	n/a	934	2,052
1.42	220.72	n/a	917	2,969
1.77	221.07	n/a	887	3,856
2.12	221.42	n/a	844	4,700
2.48	221.78	n/a	780	5,480
2.83	222.13	n/a	684	6,164
3.19	222.49	n/a	486	6,649
3.54	222.84	n/a	401	7,050
3.55	222.85	n/a	10	7,060
4.00	223.30	n/a	25	7,085
5.00	224.30	n/a	25	7,110

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 8.00	10.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 8.00	10.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 2	1	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 220.90	221.20	0.00	0.00	Weir Type	=			
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	/ Wet area)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage /	Storage / I	Discharge 1	Table		,	()	()				,	,	5 ()
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	219.30	0.00	0.00									0.000
0.04	40	219.34	0.00	0.00									0.000
0.07	80	219.37	0.00	0.00									0.000
0.11	120	219.41	0.00	0.00									0.000
0.14	160	219.44	0.00	0.00									0.000
0.18	201	219.48	0.00	0.00									0.000
0.21	241	219.51	0.00	0.00									0.000
0.25	281	219.55	0.00	0.00									0.000
0.28	321	219.58	0.00	0.00									0.000
0.32	361	219.62	0.00	0.00									0.000
0.35	401	219.65	0.00	0.00									0.000
0.39	473	219.69	0.00	0.00									0.000
0.42	545	219.72	0.00	0.00									0.000
0.46	616	219.76	0.00	0.00									0.000
0.50	688	219.80	0.00	0.00									0.000
0.53	760	219.83	0.00	0.00									0.000
0.57	832	219.87	0.00	0.00									0.000
0.60	903	219.90	0.00	0.00									0.000
0.64	975	219.94	0.00	0.00									0.000
0.67	1.047	219.97	0.00	0.00									0.000
0.71	1,119	220.01	0.00	0.00									0.000
0.74	1,212	220.04	0.00	0.00									0.000
0.78	1 305	220.08	0.00	0.00									0.000
0.81	1 399	220 11	0.00	0.00									0.000
0.85	1 492	220 15	0.00	0.00									0.000
0.88	1,586	220.18	0.00	0.00									0.000
0.92	1 679	220.22	0.00	0.00									0.000
0.96	1 772	220.26	0.00	0.00									0.000
0.99	1 866	220.20	0.00	0.00									0.000
0.00	1,000	220.20	0.00	0.00									0.000

Continues on next page ...

RECHARGE 2A Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
1.03	1,959	220.33	0.00	0.00									0.000
1.06	2,052	220.36	0.00	0.00									0.000
1.10	2,144	220.40	0.00	0.00									0.000
1.17	2,200	220.43	0.00	0.00									0.000
1.20	2,419	220.50	0.00	0.00									0.000
1.24	2,511	220.54	0.00	0.00									0.000
1.27	2,602	220.57	0.00	0.00									0.000
1.31	2,694	220.61	0.00	0.00									0.000
1.33	2,700	220.03	0.00	0.00									0.000
1.42	2,969	220.72	0.00	0.00									0.000
1.45	3,058	220.75	0.00	0.00									0.000
1.49	3,146	220.79	0.00	0.00									0.000
1.52	3,235	220.82	0.00	0.00									0.000
1.50	3,324	220.80	0.00	0.00									0.000
1.63	3,501	220.93	0.01 ic	0.00							<u> </u>		0.000
1.66	3,590	220.96	0.03 ic	0.00									0.029
1.70	3,679	221.00	0.07 ic	0.00									0.070
1.73	3,768	221.03	0.13 ic	0.00									0.126
1.//	3,856	221.07	0.20 ic	0.00									0.198
1.01	3,941	221.11 221.14	0.20 IC 0.38 ic	0.00									0.203
1.88	4 109	221.14	0.00 ic	0.00									0.000
1.91	4,194	221.21	0.61 ic	0.00 ic									0.610
1.95	4,278	221.25	0.74 ic	0.01 ic									0.747
1.98	4,362	221.28	0.87 ic	0.03 ic									0.901
2.02	4,447	221.32	1.01 ic	0.06 ic									1.070
2.05	4,531	221.35	1.10 IC 1.31 ic	0.09 IC 0.14 ic									1.252
2.03	4,700	221.33	1.45 ic	0.14 ic									1.641
2.16	4,778	221.46	1.59 ic	0.25 ic									1.845
2.19	4,856	221.49	1.73 ic	0.32 ic									2.047
2.23	4,934	221.53	1.85 ic	0.39 ic									2.241
2.27	5,012	221.57	1.94 ic	0.47 ic									2.413
2.30	5,090 5,168	221.60	2.04 IC 2.13 ic	0.50 IC 0.65 ic									2.599
2.37	5.246	221.67	2.23 ic	0.05 ic 0.75 ic									2.971
2.41	5,324	221.71	2.31 ic	0.84 ic									3.157
2.44	5,402	221.74	2.40 ic	0.94 ic									3.342
2.48	5,480	221.78	2.48 ic	1.05 ic									3.527
2.51	5,548	221.81	2.56 IC	1.15 IC 1.25 ic									3.708
2.55	5 685	221.03	2.04 iC 2.71 ic	1.25 ic									4 061
2.62	5,753	221.92	2.78 ic	1.45 ic									4.231
2.65	5,822	221.96	2.86 ic	1.54 ic									4.393
2.69	5,890	221.99	2.92 ic	1.62 ic									4.543
2.73	5,958	222.03	2.99 ic	1.69 ic									4.677
2.70	6,027	222.00	3.00 IC 3.12 ic	1.75 IC 1.82 ic									4.809
2.83	6,164	222.10	3.19 ic	1.89 ic									5.071
2.87	6,212	222.17	3.25 ic	1.95 ic									5.197
2.90	6,261	222.20	3.31 ic	2.01 ic									5.320
2.94	6,309	222.24	3.37 ic	2.07 ic									5.439
2.97	6,358	222.27	3.43 IC 3.40 ic	2.13 IC 2.18 ic									5.556
3.04	6 455	222.31	3.54 ic	2.10 ic									5 783
3.08	6,503	222.38	3.60 ic	2.29 ic									5.893
3.12	6,552	222.42	3.65 ic	2.35 ic									6.000
3.15	6,601	222.45	3.71 ic	2.40 ic									6.106
3.19	6,649	222.49	3.76 ic	2.45 ic									6.210
3.22 3.26	0,089 6 720	222.52	3.01 IC 3.87 ic	2.50 IC 2.55 ic									0.312
3 29	6 769	222.00	3.92 ic	2.55 iC 2.59 ic									6.512
3.33	6,809	222.63	3.97 ic	2.64 ic									6.609
3.36	6,850	222.66	4.02 ic	2.69 ic									6.705
3.40	6,890	222.70	4.07 ic	2.73 ic									6.799
3.43	6,930	222.73	4.12 ic	2.78 ic									6.892
3.47 3.50	0,970 7 010	222.11 222 80	4.17 IC 4.21 ic	∠.ŏ∠ IC 2.86 ic									0.984
3.54	7.050	222.84	4.26 ic	2.90 ic									7.165
	.,												

RECHARGE 2A Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
3.54	7,051	222.84	4.26 ic	2.91 ic									7.167
3.54	7,052	222.84	4.26 ic	2.91 ic									7.170
3.54	7,053	222.84	4.26 ic	2.91 ic									7.172
3.54	7,054	222.84	4.27 ic	2.91 ic									7.175
3.54	7,055	222.85	4.27 ic	2.91 ic									7.177
3.55	7,056	222.85	4.27 ic	2.91 ic									7.180
3.55	7,057	222.85	4.27 ic	2.91 ic									7.182
3.55	7,058	222.85	4.27 ic	2.91 ic									7.185
3.55	7,059	222.85	4.27 ic	2.92 ic									7.187
3.55	7,060	222.85	4.27 ic	2.92 ic									7.190
3.60	7,063	222.90	4.33 ic	2.97 ic									7.301
3.64	7,065	222.94	4.39 ic	3.02 ic									7.412
3.69	7,068	222.99	4.45 ic	3.07 ic									7.520
3.73	7,070	223.03	4.51 ic	3.12 ic									7.627
3.78	7,073	223.07	4.56 ic	3.17 ic									7.732
3.82	7,075	223.12	4.62 ic	3.22 ic									7.836
3.87	7,078	223.16	4.67 ic	3.27 ic									7.939
3.91	7,080	223.21	4.73 ic	3.31 ic									8.040
3.95	7,083	223.26	4.78 ic	3.36 ic									8.140
4.00	7,085	223.30	4.83 ic	3.41 ic									8.239
4.10	7,088	223.40	4.95 ic	3.51 ic									8.454
4.20	7,090	223.50	5.06 ic	3.60 ic									8.664
4.30	7,093	223.60	5.17 ic	3.70 ic									8.869
4.40	7,095	223.70	5.28 ic	3.79 ic									9.069
4.50	7,098	223.80	5.38 ic	3.88 ic									9.265
4.60	7,100	223.90	5.49 ic	3.97 ic									9.457
4.70	7,103	224.00	5.59 ic	4.05 ic									9.644
4.80	7,105	224.10	5.69 ic	4.14 ic									9.829
4.90	7,108	224.20	5.79 ic	4.22 ic									10.01
5.00	7,110	224.30	5.89 ic	4.30 ic									10.19

...End

Installed Chamber Volume

001					
Date:	November 18, 2022				
	Project Info	ormation:			Calculations Performed By:
				RECHARGER ISOND	
		100110			
	Chamber Spe	ecifications			Recharger 180HD Stormwater System
	Height	20.5	inches		Within Chambers 6,034.36 cu. feet
	Width	36.0	inches		Within Feed Connectors 9.10 cu. feet
	Length	/.33	reet	R ANNESS	Total Storage Provided 10.093.9 cu feet
1 '	Installed Length	0.33	ieet		Total Storage Provided 10,093.9 Cu. leet
Bar			/ 1 1/ 1/ 1/ 1/		10121 \$102200 00000000 00000000000000000

Materials List

Recharger			
Total Number of Chambers Required	273	pieces	
Separator Row Chambers	13	pieces	Separator Row Qty Included in Total
Starter Chambers	21	pieces	
Intermediate Chambers	231	pieces	
End Chambers	21	pieces	
HVLV FC-24 Feed Connectors	40	pieces	Based on 2 Internal Manifolds
CULTEC No. 410 Non-Woven Geotextile	1775	sq. yards	
CULTEC No. 4800 Woven Geotextile	228	feet	
Stone	375	cu, vards	

Bed Detail

Bed Layout Information Number of Rows Wide 21 13 pieces Number of Chambers Long Chamber Row Width pieces 68.00 83.29 feet Chamber Row Length feet Bed Width 70.00 feet Bed Length Bed Area Required 85.29 5970.30 feet sq. feet Length of Separator Row 83.29 feet

Bed detail for reference only. Not project specific. Not to scale.

35.39

cu. feet

Conceptual graphic only. Not job specific.

Cross Section Table Reference								
А	Depth of Stone Base	6.0	inches					
в	Chamber Height	20.5	inches					
с	Depth of Stone Above Units	6.0	inches					
D	Depth of 95% Compacted Fill	8.0	inches					
E	Max. Depth Allowed Above the Chamber	12.00	feet					
F	Chamber Width	36.0	inches					
G	Center to Center Spacing	3.25	feet					
н	Effective Depth	2.71	feet					
1	Bed Depth	3.38	feet					

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Pond No. 4 - RECHARGE 3

Pond Data

BGn@tstortagresisibæstedlem us2tPedfeffiftedRivestureSpan = 1.71 x 3.00 ft, Barrel Len = 82.00 ft, No. Barrels = 21, Slope = 0.00%, Headers = No **Encasement** -Invert elev. = 218.00 ft, Width = 3.25 ft, Height = 2.71 ft, Voids = 40.00%

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	218.00	n/a	0	0	
0.27	218.27	n/a	607	607	
0.54	218.54	n/a	737	1,344	
0.81	218.81	n/a	1,441	2,785	
1.08	219.08	n/a	1.417	4.202	
1.36	219.35	n/a	1,368	5,570	
1.63	219.63	n/a	1.290	6.860	
1.90	219.90	n/a	1,171	8,031	
2.17	220.17	n/a	968	8,999	
2.44	220.44	n/a	626	9,625	
2.71	220.71	n/a	607	10.232	
2.72	220.72	n/a	1	10.233	
3.00	221.00	n/a	17	10.250	
4.00	222.00	n/a	50	10,300	
4.30	222.30	n/a	15	10.315	

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 8.00	0.00	12.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 8.00	0.00	12.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 2	0	1	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 218.60	0.00	219.00	0.00	Weir Type	=			
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	y Wet area)	1	
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

•	0	0											
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	218.00	0.00		0.00								0.000
0.03	61	218.03	0.00		0.00								0.000
0.05	121	218.05	0.00		0.00								0.000
0.08	182	218.08	0.00		0.00								0.000
0.11	243	218.11	0.00		0.00								0.000
0.14	303	218.14	0.00		0.00								0.000
0.16	364	218.16	0.00		0.00								0.000
0.19	425	218.19	0.00		0.00								0.000
0.22	485	218.22	0.00		0.00								0.000
0.24	546	218.24	0.00		0.00								0.000
0.27	607	218.27	0.00		0.00								0.000
0.30	680	218.30	0.00		0.00								0.000
0.33	754	218.33	0.00		0.00								0.000
0.35	828	218.35	0.00		0.00								0.000
0.38	902	218.38	0.00		0.00								0.000
0.41	975	218.41	0.00		0.00								0.000
0.43	1,049	218.43	0.00		0.00								0.000
0.46	1,123	218.46	0.00		0.00								0.000
0.49	1,196	218.49	0.00		0.00								0.000
0.51	1,270	218.51	0.00		0.00								0.000
0.54	1,344	218.54	0.00		0.00								0.000
0.57	1,488	218.57	0.00		0.00								0.000
<mark>0.60</mark>	<mark>1,632</mark>	218.60	0.00		0.00								0.000
0.62	1,776	218.62	0.00 ic		0.00								0.004
0.65	1,920	218.65	0.02 ic		0.00								0.018
0.68	2,065	218.68	0.04 ic		0.00								0.043
0.70	2,209	218.70	0.08 ic		0.00								0.077
0.73	2,353	218.73	0.12 ic		0.00								0.121

Continues on next page ...

RECHARGE 3 Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.76	2,497	218.76	0.17 ic		0.00								0.174
0.79	2,641	218.79	0.23 ic		0.00								0.234
0.81	2,785	218.81	0.30 ic		0.00								0.302
0.84	2,927	218.84	0.38 IC		0.00								0.378
0.87	3,069	218.87	0.46 IC		0.00								0.460
0.03	3 352	218.03	0.64 ic		0.00								0.550
0.95	3,494	218.95	0.74 ic		0.00								0.742
0.98	3,635	218.98	0.85 ic		0.00								0.846
1.00	3,777	219.00	0.95 ic		0.00 ic								0.953
1.03	3,919	219.03	1.06 ic		0.00 ic								1.066
1.06	4,060	219.06	1.17 ic		0.01 ic								1.188
1.08	4,202	219.08	1.29 ic		0.03 ic								1.318
1.11	4,339	219.11	1.40 IC		0.05 IC								1.453
1.14	4,475	219.14	1.51 IC		0.08 IC								1.592
1.17	4,012	219.17	1.02 IC 1.72 ic		0.12 IC 0.16 ic								1.734
1.19	4,749	219.19	1.72 IC 1.81 ic		0.10 ic								2 017
1.22	5 023	219.22	1.89 ic		0.20 ic								2 150
1.20	5 159	219.20	1.00 ic		0.31 ic								2 271
1.30	5.296	219.30	2.04 ic		0.37 ic								2.410
1.33	5,433	219.33	2.11 ic		0.44 ic								2.549
1.36	5,570	219.35	2.18 ic		0.51 ic								2.690
1.38	5,699	219.38	2.25 ic		0.58 ic								2.833
1.41	5,828	219.41	2.32 ic		0.66 ic								2.978
1.44	5,957	219.44	2.38 ic		0.74 ic								3.124
1.46	6,086	219.46	2.45 ic		0.83 ic								3.274
1.49	6,215	219.49	2.51 ic		0.91 ic								3.423
1.52	6,344	219.52	2.57 IC		1.01 IC								3.575
1.54	6,473	219.54	2.63 IC		1.10 IC								3.727
1.57	0,002 6 731	219.57	2.09 IC 2.74 ic		1.20 IC								3.001
1.00	6 860	219.00	2.74 IC 2.80 ic		1.29 ic								4.030
1.65	6 977	219.65	2.00 ic		1.50 ic								4 348
1.68	7.094	219.68	2.90 ic		1.60 ic								4.503
1.71	7,211	219.71	2.96 ic		1.70 ic								4.659
1.73	7,328	219.73	3.01 ic		1.80 ic								4.813
1.76	7,445	219.76	3.06 ic		1.91 ic								4.966
1.79	7,562	219.79	3.11 ic		2.01 ic								5.117
1.82	7,679	219.82	3.16 ic		2.11 ic								5.268
1.84	7,796	219.84	3.21 ic		2.21 ic								5.413
1.87	7,914	219.87	3.25 ic		2.30 ic								5.557
1.90	8,031	219.90	3.30 IC		2.40 IC								5.695
1.92	0,120	219.92	3.35 IC 3.30 ic		2.40 IC 2.56 ic								5.027
1.95	8 321	219.95	3.39 iC		2.30 ic 2.63 ic								6.066
2 01	8 4 1 8	220.01	3 48 ic		2.00 ic								6 168
2.03	8.515	220.03	3.52 ic		2.76 ic								6.283
2.06	8,612	220.06	3.57 ic		2.83 ic								6.396
2.09	8,708	220.09	3.61 ic		2.90 ic								6.506
2.11	8,805	220.11	3.65 ic		2.96 ic								6.614
2.14	8,902	220.14	3.69 ic		3.03 ic								6.721
2.17	8,999	220.17	3.73 ic		3.09 ic								6.825
2.20	9,061	220.20	3.78 ic		3.15 ic								6.928
2.22	9,124	220.22	3.82 IC		3.21 IC								7.029
2.25	9,187	220.25	3.86 IC		3.27 IC								7.129
2.28	9,249	220.28	3.90 IC		3.33 IC 2.20 io								7 224
2.30	9,312	220.30	3.93 IC 3.97 ic		3.39 IC								7.324
2.35	9,374	220.33	4 01 ic		3.50 ic								7 513
2.38	9,500	220.38	4.01 ic		3.56 ic								7 606
2.41	9,562	220.41	4.09 ic		3.61 ic								7.698
2.44	9,625	220.44	4.12 ic		3.66 ic								7.788
2.47	9,685	220.47	4.16 ic		3.72 ic								7.878
2.49	9,746	220.49	4.20 ic		3.77 ic								7.966
2.52	9,807	220.52	4.23 ic		3.82 ic								8.053
2.55	9,867	220.55	4.27 ic		3.87 ic								8.140
2.57	9,928	220.57	4.31 ic		3.92 ic								8.225
2.60	9,989	220.60	4.34 ic		3.97 ic								8.310
2.63	10,049	220.63	4.38 ic		4.02 ic								8.393
2.00	10,110	220.00	4.41 IC		4.U/ IC								0.4/6
∠.0ŏ	10,171	220.08	4.45 IC		4.11 IC								0.000

RECHARGE 3 Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
2.71	10,232	220.71	4.48 ic		4.16 ic								8.639
2.71	10,232	220.71	4.48 ic		4.16 ic								8.642
2.71	10,232	220.71	4.48 ic		4.16 ic								8.645
2.71	10,232	220.71	4.48 ic		4.16 ic								8.648
2.71	10,232	220.71	4.49 ic		4.17 ic								8.651
2.72	10,232	220.71	4.49 ic		4.17 ic								8.654
2.72	10,232	220.72	4.49 ic		4.17 ic								8.657
2.72	10,233	220.72	4.49 ic		4.17 ic								8.660
2.72	10,233	220.72	4.49 ic		4.17 ic								8.663
2.72	10,233	220.72	4.49 ic		4.17 ic								8.666
2.72	10,233	220.72	4.49 ic		4.18 ic								8.669
2.75	10,235	220.75	4.53 ic		4.22 ic								8.752
2.78	10,236	220.78	4.56 ic		4.27 ic								8.834
2.80	10,238	220.80	4.60 ic		4.32 ic								8.915
2.83	10,240	220.83	4.63 ic		4.36 ic								8.995
2.86	10,242	220.86	4.67 ic		4.41 ic								9.075
2.89	10,243	220.89	4.70 ic		4.45 ic								9.154
2.92	10,245	220.92	4.73 ic		4.50 ic								9.232
2.94	10,247	220.94	4.77 ic		4.54 ic								9.310
2.97	10,248	220.97	4.80 ic		4.59 ic								9.387
3.00	10,250	221.00	4.83 ic		4.63 ic								9.463
3.10	10,255	221.10	4.95 ic		4.78 ic								9.730
3.20	10,260	221.20	5.06 ic		4.93 ic								9.990
3.30	10,265	221.30	5.17 ic		5.07 ic								10.24
3.40	10,270	221.40	5.28 ic		5.21 ic								10.49
3.50	10,275	221.50	5.38 ic		5.35 ic								10.73
3.60	10,280	221.60	5.49 ic		5.48 ic								10.97
3.70	10,285	221.70	5.59 ic		5.61 ic								11.20
3.80	10,290	221.80	5.69 ic		5.73 ic								11.43
3.90	10,295	221.90	5.79 ic		5.86 ic								11.65
4.00	10,300	222.00	5.89 ic		5.98 ic								11.86
4.03	10,302	222.03	5.91 ic		6.01 ic								11.93
4.06	10,303	222.06	5.94 ic		6.05 ic								11.99
4.09	10,305	222.09	5.97 ic		6.09 ic								12.06
4.12	10,306	222.12	6.00 ic		6.12 ic								12.12
4.15	10,308	222.15	6.03 ic		6.16 ic								12.18
4.18	10,309	222.18	6.06 ic		6.19 ic								12.25
4.21	10,311	222.21	6.08 ic		6.22 ic								12.31
4.24	10,312	222.24	6.11 ic		6.26 ic								12.37
4.27	10,314	222.27	6.14 ic		6.29 ic								12.43
4.30	10,315	222.30	6.17 ic		6.33 ic								12.49

...End

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

- 3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row
- 4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

Project: Location: Prepared For:	1 New England Way Ayer, MA Kelly Engineering Group / Brandon Li	C NTECH ENGINEERED SOLUTIONS				
Purpose:	To calculate the water quality flow rate (WQF) over a given site area derived from the first 1" of runoff from the contributing impervious su	. In this situation the WQF is rface.				
<u>Reference:</u>	Massachusetts Dept. of Environmental Protection Wetlands Program / United States Department of Agriculture Natural Resources Conservation Service TR-55 Manual					
<u>Procedure:</u>	Determine unit peak discharge using Figure 1 or 2. Figure 2 is in tab the tc, read the unit peak discharge (qu) from Figure 1 or Table in Fig following units: cfs/mi ² /watershed inches (csm/in).	ular form so is preferred. Using gure 2. qu is expressed in the				
	Compute Q Rate using the following equation:					
	Q = (qu) (A) (WQV)					
	where:					

Q = flow rate associated with first 1" of runoff

qu = the unit peak discharge, in csm/in.

A = impervious surface drainage area (in square miles) WQV = water quality volume in watershed inches (1" in this case)

Structure	Impv.	Α	t _c	t _c	WQV	au (csm/in)	O(cfs)
Name	(acres)	(miles ²)	(min)	(hr)	(in)	qu (csiii/iii.)	Q (CIS)
WQU #1	0.43	0.0006719	5.0	0.083	1.00	795.00	0.53
WQU #2	0.20	0.0003125	5.0	0.083	1.00	795.00	0.25
WQU #3	0.20	0.0003125	5.0	0.083	1.00	795.00	0.25
WQU #4	0.72	0.0011250	5.0	0.083	1.00	795.00	0.89
WQU #5	0.12	0.0001875	5.0	0.083	1.00	795.00	0.15
WQU #6	0.41	0.0006406	5.0	0.083	1.00	795.00	0.51
WQU #7	0.33	0.0005156	5.0	0.083	1.00	795.00	0.41

CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION **BASED ON THE RATIONAL RAINFALL METHOD 1 NEW ENGLAND WAY** AYER, MA 0.43 ac Unit Site Designation WQU #1 Area 0.9 Rainfall Station # Weighted C 146 5 min t_c CDS Model 2015-4 **CDS** Treatment Capacity 1.4 cfs Rainfall Percent Rainfall Cumulative Total Flowrate **Treated Flowrate** Incremental Intensity¹ Volume¹ **Rainfall Volume** Removal (%) (cfs) (cfs) (in/hr) 0.02 9.1% 9.1% 0.01 0.01 9.1 8.9% 18.0% 0.02 0.02 8.9 0.04 0.06 9.8% 27.7% 0.02 0.02 9.8 8.2% 0.08 35.9% 0.03 0.03 8.2 0.10 7.7% 43.6% 0.04 0.04 7.7 0.12 5.5% 49.1% 0.05 0.05 5.5 0.14 5.0% 54.2% 0.05 0.05 5.0 4.9 0.16 4.9% 59.1% 0.06 0.06 0.18 4.3% 63.4% 0.07 0.07 4.3 0.20 4.8% 68.2% 0.08 0.08 4.7 0.25 7.4% 75.6% 0.10 0.10 7.3 0.30 5.8% 5.7 81.5% 0.12 0.12 0.35 4.5% 85.9% 0.14 0.14 4.3 0.40 2.4% 88.3% 0.15 0.15 2.3 0.45 2.0% 90.3% 0.17 0.17 1.9 0.50 1.9% 92.1% 0.19 0.19 1.8 0.75 5.0% 97.1% 0.29 0.29 4.5 1.4 1.6% 98.7% 0.39 0.39 1.00 1.50 0.8% 99.5% 0.58 0.58 0.7 0.77 0.0 2.00 0.0% 99.5% 0.77 2.50 0.5% 100.0% 0.97 0.97 0.3 98.2 Removal Efficiency Adjustment² = 6.5% Predicted % Annual Rainfall Treated = 93.5% Predicted Net Annual Load Removal Efficiency = 91.8% 1 - Based on 10 years of hourly precipitation data from NCDC 6698, Providence WSO Airport, Kent County, RI 2 - Reduction due to use of 60-minute data for a site that has a time of concentration less than 30-minutes.

Brief Stormceptor Sizing Report - WQU #2

Project Information & Location								
Project Name	1 New England Way	Project Number	730643					
City	Ayer	State/ Province	Massachusetts					
Country	United States of America	Date	11/16/2022					
Designer Informatio	n	EOR Information (optional)						
Name	Jim Lyons	Name	Dave Mackwell					
Company	Contech Engineered Solutions	Company	Kelly Engineering Group					
Phone #	413-246-5151	Phone #	781-843-4333					
Email	jimlyons413@gmail.com	Email	dmackwell@kellyengineeringgroup.com					

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	WQU #2
Target TSS Removal (%)	80
TSS Removal (%) Provided	93
Recommended Stormceptor Model	STC 450i

The recommended Stormceptor Model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary							
Stormceptor Model	% TSS Removal Provided						
STC 450i	93						
STC 900	97						
STC 1200	97						
STC 1800	97						
STC 2400	98						
STC 3600	98						
STC 4800	99						
STC 6000	99						
STC 7200	99						
STC 11000	99						
STC 13000	99						
STC 16000	100						

Stormceptor*

Sizing Details				
Drainage Area		Water Quality Objective		
Total Area (acres)	0.25	TSS Removal (%)	80.0
Imperviousness %	82.0	Runoff Volume Capture (%)		
Rainfall		Oil Spill Capture Volume (Gal)		
Station Name	BIRCH HILL DAM	Peak Conveyed Flow Rate (CFS)		
State/Province	Massachusetts	Water Quality Flow Rate (CFS) 0		0.25
Station ID #	0666	Up Stream Storage		
Years of Records	58	Storage (ac-ft) Discharge (cfs)		rge (cfs)
Latitude	42°38'0"N	0.000 0.000		000
Longitude	72°7'0"W	Up Stream Flow Diversion		

Max. Flow to Stormceptor (cfs)

Particle Size Distribution (PSD) The selected PSD defines TSS removal			
	OK-110		
Particle Diameter (microns)	Distribution %	Specific Gravity	
1.0	0.0	2.65	
53.0	3.0	2.65	
75.0	15.0	2.65	
88.0	25.0	2.65	
106.0	41.0	2.65	
125.0	15.0	2.65	
150.0	1.0	2.65	
212.0	0.0	2.65	
Notes			

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.

• For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

For Stormceptor Specifications and Drawings Please Visit:

https://www.conteches.com/technical-guides/search?filter=1WBC0O5EYX

Brief Stormceptor Sizing Report - WQU #3

Project Information & Location			
Project Name	1 New England Way	Project Number	730643
City	Ayer	State/ Province	Massachusetts
Country	United States of America	Date 11/16/2022	
Designer Information		EOR Information (optional)	
Name	Jim Lyons	Name	Dave Mackwell
Company	Contech Engineered Solutions	Company	Kelly Engineering Group
Phone #	413-246-5151	Phone #	781-843-4333
Email	jimlyons413@gmail.com	Email	dmackwell@kellyengineeringgroup.com

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	WQU #3
Target TSS Removal (%)	80
TSS Removal (%) Provided	94
Recommended Stormceptor Model	STC 450i

The recommended Stormceptor Model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary			
Stormceptor Model	% TSS Removal Provided		
STC 450i	94		
STC 900	97		
STC 1200	97		
STC 1800	97		
STC 2400	98		
STC 3600	98		
STC 4800	99		
STC 6000	99		
STC 7200	99		
STC 11000	99		
STC 13000	99		
STC 16000	100		

Stormceptor*

Sizing Details				
Drainage Area		Water Quality Objective		
Total Area (acres)	0.25	TSS Removal (TSS Removal (%)	
Imperviousness %	79.3	Runoff Volume Capture (%)		
Rainfall		Oil Spill Capture Volume (Gal)		
Station Name	BIRCH HILL DAM	Peak Conveyed Flow Rate (CFS)		
State/Province	Massachusetts	Water Quality Flow Rate (CFS)		0.25
Station ID #	0666	Up Stream Storage		
Years of Records	58	Storage (ac-ft) Discharge (cfs)		rge (cfs)
Latitude	42°38'0"N	0.000 0.000		000
Longitude	72°7'0"W	Up Stream Flow Diversion		

Max. Flow to Stormceptor (cfs)

Particle Size Distribution (PSD) The selected PSD defines TSS removal				
	OK-110			
Particle Diameter (microns)	Distribution %	Specific Gravity		
1.0	0.0	2.65		
53.0	3.0	2.65		
75.0	15.0	2.65		
88.0	25.0	2.65		
106.0	41.0	2.65		
125.0	15.0	2.65		
150.0	1.0	2.65		
212.0	0.0	2.65		
Notes				

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.

• For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

For Stormceptor Specifications and Drawings Please Visit:

https://www.conteches.com/technical-guides/search?filter=1WBC0O5EYX

CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION **BASED ON THE RATIONAL RAINFALL METHOD 1 NEW ENGLAND WAY** AYER, MA 0.72 ac Unit Site Designation WQU #4 Area Rainfall Station # Weighted C 0.9 146 5 min t_c CDS Model 2015-4 **CDS** Treatment Capacity 1.4 cfs Rainfall Percent Rainfall Cumulative Total Flowrate **Treated Flowrate** Incremental Intensity¹ Volume¹ **Rainfall Volume** Removal (%) (cfs) (cfs) (in/hr) 0.02 9.1% 9.1% 0.01 0.01 9.1 8.9% 18.0% 0.03 0.03 8.9 0.04 0.06 9.8% 27.7% 0.04 0.04 9.8 8.2% 0.05 0.08 35.9% 0.05 8.1 0.10 7.7% 43.6% 0.06 0.06 7.6 0.12 5.5% 49.1% 0.08 0.08 5.5 0.14 5.0% 54.2% 0.09 0.09 4.9 4.8 0.16 4.9% 59.1% 0.10 0.10 0.18 4.3% 63.4% 0.12 0.12 4.2 0.20 4.8% 68.2% 0.13 0.13 4.6 0.25 7.4% 75.6% 0.16 0.16 7.1 0.30 5.8% 5.5 81.5% 0.19 0.19 0.35 4.5% 85.9% 0.23 0.23 4.2 0.40 2.4% 88.3% 0.26 0.26 2.2 0.29 0.45 2.0% 90.3% 0.29 1.8 0.50 1.9% 92.1% 0.32 0.32 1.7 0.75 5.0% 97.1% 0.49 0.49 4.2 1.3 1.6% 98.7% 0.65 0.65 1.00 1.50 0.8% 99.5% 0.97 0.97 0.6 1.30 0.0 2.00 0.0% 99.5% 1.30 2.50 0.5% 100.0% 1.62 1.40 0.2 96.4 Removal Efficiency Adjustment² = 6.5% Predicted % Annual Rainfall Treated = 93.5% Predicted Net Annual Load Removal Efficiency = 89.9% 1 - Based on 10 years of hourly precipitation data from NCDC 6698, Providence WSO Airport, Kent County, RI 2 - Reduction due to use of 60-minute data for a site that has a time of concentration less than 30-minutes.

Brief Stormceptor Sizing Report - WQU #5

Project Information & Location				
Project Name	1 New England Way	Project Number	730643	
City	Ayer	State/ Province Massachusetts		
Country	United States of America	Date 11/16/2022		
Designer Information		EOR Information (optional)		
Name	Jim Lyons	Name	Dave Mackwell	
Company	Contech Engineered Solutions	Company	Kelly Engineering Group	
Phone #	413-246-5151	Phone #	781-843-4333	
Email	jimlyons413@gmail.com	Email	dmackwell@kellyengineeringgroup.com	

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	WQU #5
Target TSS Removal (%)	80
TSS Removal (%) Provided	95
Recommended Stormceptor Model	STC 450i

The recommended Stormceptor Model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary			
Stormceptor Model	% TSS Removal Provided		
STC 450i	95		
STC 900	97		
STC 1200	97		
STC 1800	98		
STC 2400	98		
STC 3600	99		
STC 4800	99		
STC 6000	99		
STC 7200	99		
STC 11000	100		
STC 13000	100		
STC 16000	100		

Stormceptor[®]

Sizing Details				
Drainage Area		Water Quality Objective		
Total Area (acres)	0.58	TSS Removal (TSS Removal (%)	
Imperviousness %	20.4	Runoff Volume Capture (%)		
Rainfall		Oil Spill Capture Volume (Gal)		
Station Name	BIRCH HILL DAM	Peak Conveyed Flow Rate (CFS)		
State/Province	Massachusetts	Water Quality Flow Rate (CFS) 0		0.15
Station ID #	0666	Up Stream Storage		
Years of Records	58	Storage (ac-ft) Discharge (cfs)		rge (cfs)
Latitude	42°38'0"N	0.000 0.000		000
Longitude	72°7'0"W	Up Stream Flow Diversion		

Max. Flow to Stormceptor (cfs)

Particle Size Distribution (PSD) The selected PSD defines TSS removal				
	OK-110			
Particle Diameter (microns)	Distribution %	Specific Gravity		
1.0	0.0	2.65		
53.0	3.0	2.65		
75.0	15.0	2.65		
88.0	25.0	2.65		
106.0	41.0	2.65		
125.0	15.0	2.65		
150.0	1.0	2.65		
212.0	0.0	2.65		
Notes				

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.

• For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

For Stormceptor Specifications and Drawings Please Visit:

https://www.conteches.com/technical-guides/search?filter=1WBC0O5EYX

CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION **BASED ON THE RATIONAL RAINFALL METHOD 1 NEW ENGLAND WAY** AYER, MA 0.41 ac Unit Site Designation WQU #6 Area 0.9 Rainfall Station # Weighted C 146 5 min t_c CDS Model 2015-4 **CDS** Treatment Capacity 1.4 cfs Rainfall Percent Rainfall Cumulative Total Flowrate **Treated Flowrate** Incremental Intensity¹ Volume¹ **Rainfall Volume** Removal (%) (cfs) (cfs) (in/hr) 0.02 9.1% 9.1% 0.01 0.01 9.1 8.9% 18.0% 0.01 0.01 8.9 0.04 0.06 9.8% 27.7% 0.02 0.02 9.8 8.2% 0.08 35.9% 0.03 0.03 8.2 0.10 7.7% 43.6% 0.04 0.04 7.7 0.12 5.5% 49.1% 0.04 0.04 5.5 0.14 5.0% 54.2% 0.05 0.05 5.0 4.9 0.16 4.9% 59.1% 0.06 0.06 0.18 4.3% 63.4% 0.07 0.07 4.3 0.20 4.8% 68.2% 0.07 0.07 4.7 0.25 7.4% 75.6% 0.09 0.09 7.3 0.30 5.8% 5.7 81.5% 0.11 0.11 0.35 4.5% 85.9% 0.13 0.13 4.3 0.40 2.4% 88.3% 0.15 0.15 2.3 0.45 2.0% 90.3% 0.17 0.17 1.9 0.50 1.9% 92.1% 0.18 0.18 1.8 0.75 5.0% 97.1% 0.28 0.28 4.6 0.37 1.4 1.6% 98.7% 0.37 1.00 1.50 0.8% 99.5% 0.55 0.55 0.7 0.0 2.00 0.0% 99.5% 0.74 0.74 2.50 0.5% 100.0% 0.92 0.92 0.3 98.3 Removal Efficiency Adjustment² = 6.5% Predicted % Annual Rainfall Treated = 93.5% Predicted Net Annual Load Removal Efficiency = 91.9% 1 - Based on 10 years of hourly precipitation data from NCDC 6698, Providence WSO Airport, Kent County, RI 2 - Reduction due to use of 60-minute data for a site that has a time of concentration less than 30-minutes.

CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION **BASED ON THE RATIONAL RAINFALL METHOD 1 NEW ENGLAND WAY** AYER, MA 0.33 ac Unit Site Designation WQU #7 Area 0.9 Rainfall Station # Weighted C 146 5 min t_c CDS Model 2015-4 **CDS** Treatment Capacity 1.4 cfs Rainfall Percent Rainfall Cumulative Total Flowrate **Treated Flowrate** Incremental Intensity¹ Volume¹ **Rainfall Volume** Removal (%) (cfs) (cfs) (in/hr) 0.02 9.1% 9.1% 0.01 0.01 9.1 8.9% 18.0% 0.01 0.01 8.9 0.04 0.06 9.8% 27.7% 0.02 0.02 9.8 8.2% 0.08 35.9% 0.02 0.02 8.2 0.10 7.7% 43.6% 0.03 0.03 7.7 0.12 5.5% 49.1% 0.04 0.04 5.5 0.14 5.0% 54.2% 0.04 0.04 5.0 4.9 0.16 4.9% 59.1% 0.05 0.05 0.18 4.3% 63.4% 0.05 0.05 4.3 0.20 4.8% 68.2% 0.06 0.06 4.7 0.25 7.4% 75.6% 0.07 0.07 7.4 0.30 5.8% 0.09 5.7 81.5% 0.09 0.35 4.5% 85.9% 0.10 0.10 4.4 0.40 2.4% 88.3% 0.12 0.12 2.3 0.45 2.0% 90.3% 0.13 0.13 1.9 0.50 1.9% 92.1% 0.15 0.15 1.8 0.75 5.0% 97.1% 0.22 0.22 4.7 1.4 1.6% 98.7% 0.30 0.30 1.00 1.50 0.8% 99.5% 0.45 0.45 0.7 0.59 2.00 0.0% 99.5% 0.59 0.0 2.50 0.5% 100.0% 0.74 0.74 0.4 98.8 Removal Efficiency Adjustment² = 6.5% Predicted % Annual Rainfall Treated = 93.5% Predicted Net Annual Load Removal Efficiency = 92.3% 1 - Based on 10 years of hourly precipitation data from NCDC 6698, Providence WSO Airport, Kent County, RI 2 - Reduction due to use of 60-minute data for a site that has a time of concentration less than 30-minutes.

1 New England Way, Ayer MA

STORMWATER MANAGEMENT SYSTEM OPERATION AND MAINTENANCE PLAN & LONG-TERM POLLUTION PREVENTION PLAN 11/15/22

Prepared by:

KELLY ENGINEERING GROUP, INC. Zero Campanelli Drive Braintree, Massachusetts 02184

OWNER AND RESPONSIBLE PARTY: Nasoya Foods LLC 1 New England Way Ayer, MA 01732

Note: If ownership of this property changes then the new owner becomes the responsible party. The Owner may assign responsibility to a tenant on the property.

Introduction

Considerable time, effort and cost has been spent in the design and construction of the stormwater management system for this development. The stormwater management system consists of a number of Best Management Practices (BMP's). These BMP's combine to ensure that storm runoff from the site will not damage the sensitive environmental resources surrounding the site. In order to ensure that these BMP's operate as designed it is very important that the procedures in this operation and maintenance plan be followed. Most of these operation procedures require observation and measurement; however, at certain times more extensive maintenance measures may be needed. The following is an itemization of each of these BMP's and their maintenance needs.

The party responsible for maintenance should contract with a maintenance organization capable of performing the more extensive measures such as pumping of catch basin sumps, etc.

BMP No. 1 – Paved Road Surface/Parking Lot Area:

- Regularly pick up and remove litter from the parking lot area, landscaped islands and perimeter landscaped areas and water quality areas.
- The paved area is to be swept a minimum of two times per year, at least once during April and again during September with a high efficiency vacuum sweeper or a regenerative air sweeper. If a mechanical sweeper is used, the paved area is to be swept a minimum of once a month.

BMP No. 2 - Deep Sump Catch Basins:

- Basins are to be inspected 4 times per year.
 - 1. Verify that tees are secure and free-flowing.
 - 2. Measure depth of sediment below water line.
- Basins are to be cleaned whenever sediment and hydrocarbons are observed. Basins are to be cleaned a minimum of twice per year. One of these cleanings shall occur before April 15th of each year and one shall occur before September 15th of each year. Basins may be cleaned either using a clamshell or a vacuum pump.
- All liquid shall be pumped from the sump of each basin at least once per year.
- All sediments and hydrocarbons should be properly handled and disposed of, in accordance with local, state and federal guidelines and regulations.

Note: See catch basin detail for explanation of terms.

BMP No. 3 – Proprietary Separators:

Contech CDS:

Twice a year inspect the Units to ensure that it is operating correctly and to measure the sediment depth using a "dip stick". The floatables should be removed and the sump cleaned when the sump is above 85% full. At least once a year, the unit should be pumped down and the screen carefully inspected for damage and to ensure that it is properly fastened. Ideally, the screen should be power washed for the inspection.

Stormceptors:

•

Twice a year inspect the Units to ensure that it is operating correctly and to measure the sediment depth using a "dip stick" and the oil depth.

- Whenever the oil is observed, the entire liquid volume shall be pumped from the units. Oil is pumped through the 6" inspection/clean out pipe.
- For Stormceptor 450i, when the sediment depth is 8" or more the sediment shall be completely pumped from the stormceptor units. Sediment is pumped through the 24" opening.
- Sediment shall be pumped through the 24" opening when sediment depth indicates required maintenance. See Stormceptor Technical Manual for sediment depth requiring servicing.

If any problems are encountered, contact the manufacturer.

BMP No. 4 - Subsurface Recharge Systems:

- The inlet pipe and observation basin shall be inspected 4 times a year. Any accumulated debris shall be removed.
- Inspect recharge facilities following a rainfall event greater than 2.5 inches in a 24 hour period.
- If standing water is observed for more than 48 hours following a storm event, immediately retain a qualified professional to assess whether infiltration function has been lost and develop recommended corrective actions.
- Inlet and outlet structures.

On a regular basis, the inlet pipe and outlet structure shall be checked for debris and removed as necessary to ensure unobstructed flow of water. Outlet structures should be inspected at least once annually by a qualified professional for structural integrity and for any conditions which could adversely affect their function.

• Flared end section and rip rap.

Flared End Sections should be inspected at least once annually for any conditions which could adversely affect their function.

Snow Removal:

- There shall be no plowing or stock piling of snow within all resource areas without the prior written permission from state or local approving authority.
- Road salts and de-icing materials shall be stored on impervious pads and covered to protect from wind and precipitation.
- No de-icing materials shall be stored nor used within all resource areas and any area subject to the jurisdiction of local and state regulations without the prior written permission from state or local approving authority.
- No de-icing materials shall be stored within Zone I, Zone II, Zone A, and 200 feet from a river or estuary.

Storage and Use of Chemicals:

- No pesticides, herbicides, nor insecticides shall be stored nor used within all resource areas and any area subject to the jurisdiction of local and state regulations without the prior written permission from state or local approving authority.
- Chemical storage on site shall be limited. Any chemicals that must be stored shall be stored in a secure area in accordance with Local and State regulations.

Spill prevention response and containment:

Containment – In the event of a discharge or spill of oil or another hazardous material, , the following procedures are to be followed to mitigate or prevent the release of hazardous waste;

- 1. Secure the Area
- 2. Halt / shut down the operation
- 3. Keep unauthorized people away from the release area by using physical barriers (ie. caution tape)
- 4. Determine the source material involved
- 5. Refer to the 2020 Emergency Response Guidebook for properties of the material including any potential evacuation distances.
- 6. Utilize appropriate chemical protective clothing
- 7. Attempt to locate the source of the release and the extent of the contamination
- 8. Undertake initial response actions to halt the release of oil or other material and contain its spread using absorbent materials, physical barriers, containment pail, etc.
- 9. Look for storm drains, manhole covers and other vertical access points and dike off or dam to prevent material from entering these areas. Outlets to stormwater management ponds shall be plugged so that hazardous material do not enter resource areas.
- 10. Take those actions to protect public health, safety and the environment that can be taken without compromising your safety or the safety of others.
- 11. Initiate notification procedures. Notifications to local, State and Federal agencies (including National Emergency Response Center when applicable)
- Local Police / Fire 911
- Municipal Department of Public Works: 978-772-8240 (Stormwater Hotline)
- Applicable State authority: MASS DEP 1-888-304-1133
- Environmental Contractor: Clean Harbors 1-800-645-8265
- National Emergency Response Center (if release exceeds US DOT "reportable quantity" amount): 1-800-424-8802
- CHEMTREC: 1-800-424-9300
- AIG PIER 1-877-743-7669
- Once the emergency response crew arrives at the scene, the following actions will be taken:
- Material that has been released to impervious surface (ie. concrete or pavement) will be absorbed using a suitable absorbent such as Speedi Dry or diatomaceous earth. This material will then be containerized and sent to a fully licensed waste management facility for disposal.
- Material that has reached any pervious surface such as soil will result in the remediation of the affected area to the extent that all contamination is removed. All material collected as a result of remediation will be containerized and sent for disposal at a fully licensed waste management facility. In addition, analytics will be conducted when necessary to determine if all contamination has been removed.
- Prior to leaving any site, appropriate backfill will be used to replace any ground cover removed during the clean-up process.
- Any damaged container involved in an accident will be placed into a suitable salvage drum and shipped to a fully licensed waste management facility for disposal.
- The first priority of any emergency response is life and health. If you do not have adequate information or personal protective equipment, do not approach the release.

Hazardous Waste:

- Hazardous Waste All hazardous waste materials will be disposed of in the manner specified by local, state and/or federal regulations and by the manufacturer of such products.
- There shall be no illicit discharges to the stormwater management system.

Material and Waste Storage, Handling and Management:

All waste materials will be collected and stored in a securely lidded metal dumpster from a solid waste management company licensed to do business by the state and the town. The dumpster will comply with all local and state solid waste management regulations.

Training for Long Term Pollution Prevention Plan:

• All staff or personnel involved and responsible for implementing the Stormwater Management System Operations and Maintenance Plan and the Long-Term Pollution Prevention Plan shall be properly trained as required under the DEP Stormwater Management Regulations. Training shall be documented with records kept with other stormwater maintenance records.

Lawn and Garden activities:

- There shall be no exterior storage of fertilizers, pesticides, herbicides, or insecticides. No pesticides, herbicides, nor insecticides shall be stored nor used within any resource areas its buffers, and any area subject to the jurisdiction of local and state regulations without the prior written permission from state or local approving authority.
- Fertilizers and pesticides shall be applied properly, sparingly, and outside any resource areas and its buffers.

To reduce the impact of fertilizers, consider the following tips;

- Don't fertilize before a rain storm.
- Consider using organic fertilizers. They release nutrients more slowly.
- Test soils before applying fertilizers. Some soils may not need fertilizers. A standard soil test costs \$9.00. (Call the UMass Extension Soil Testing Lab at 413-545-2311 or download a soil test order form at http://www.umass.edu/plsoils/soiltest/.)

Illicit Discharges:

Illicit discharges that are not allowed to the stormwater management system include;

- wastewater discharges
- discharges of stormwater contaminated by contact with process wastes, raw materials, toxic pollutants, hazardous substances, oil, or grease

Allowable Non-Stormwater Discharges;

- firefighting,
- water line flushing,
- landscape irrigation,
- uncontaminated groundwater,
- potable water sources,
- foundation drains,
- air conditioning condensation,
- footing drains, individual resident car washing,
- flows from riparian habitats and wetlands,
- dechlorinated water from swimming pools
- water used for street washing and water used to clean residential buildings without detergents.

Nasoya Foods LL	C						
PROJECT LOCATION: 1 New England Way, Ayer, MA							
STORMWATER ANA	GEMENT	BEST MA	NAGEMENT PRACTICES - INSPECTION SCHEDULE AND EVALUATION CHECKLIST				
Best Management Practice	Inspection Frequency (1)	Date I	Inspector	Minimum Maintenance and Key Items to Check (1)	Cleaning/Repair Needed yes no (list items)	Date of Cleaning /Repair	Perform ed By
Street Sweeping	4x per year			Vacuum sweeper			
Deep Sump and Hooded Catch Basins	4x per year			Remove sediment 1x per year or if >6"			
Outlet Control Structure	2x per year first year, annually thereafter			Inspect inlets and outlets			
Recharge Chambers	4x per year			Inspect after 2.5" rain in 24 hours, drain time less than 3 days			
CDS water Quality device	4x per year			Per manufacturer Requirements			
Stormceptor Water Quality Device				Per manufacturer Requirements			
(1) Refer to the Operation and Maintenance Plan for recommendations regarding frequency of inspections and maintenance of specific BMP's.							
recommendations regarding frequency for inspection and maintenance of specific BMPs.							
Stormwater Control Manager/Environmental Monitor: Stamp/Signature							

KELLY ENGINEERING GROUP, INC.

Zero Campanelli Drive-Braintree-MA 02184 Phone 781 843 4333

Attachment D Pipe Sizing Calculations

RATIONAL METHOD CALCULATIONS

1 INDUSTRIAL WAY, AYER MA

11/10/22		25 year 5 min TC- Boston IDF	curce			in/hr		s.f.	acres	cfs	_	
Area	Impervious Area(s.f.)	Impervious Area (Acres)	Green (s.f.)	Green (acres)	C (Imp.)	i(Intensity)	C(green)	Total Area	Total Area (a	Q = CiA		
CB 1A	18,744	0.4303	8,707	0.1999	0.9	6	0.4	27,451	0.6302	2.80		
CB1B	8,802	0.2021	1,948	0.0447	0.9	6	0.4	10,750	0.2468	1.20		
CB1C	8,773	0.2014	2,288	0.0525	0.9	6	0.4	11,061	0.2539	1.21		
CB1D	14,876	0.3415	11,067	0.2541	0.9	6	0.4	25,943	0.5956	2.45		
TD 1	16,304	0.3743	9,202	0.2112	0.9	6	0.4	25,506	0.5855	2.53		
AD 1	0	0.0000	18,064	0.4147	0.9	6	0.4	18,064	0.4147	1.00		
R1A	14,100	0.3237	0	0.0000	0.9	6	0.4	14,100	0.3237	1.75		
R1B	11,950	0.2743	0	0.0000	0.9	6	0.4	11,950	0.2743	1.48		
R1C	11,950	0.2743	0	0.0000	0.9	6	0.4	11,950	0.2743	1.48		
R1D	16,718	0.3838	0	0.0000	0.9	6	0.4	16,718	0.3838	2.07		
R2A	9,236	0.2120	0	0.0000	0.9	6	0.4	9,236	0.2120	1.14		
CB 2A	5,150	0.1182	20,095	0.4613	0.9	6	0.4	25,245	0.5795	1.75		
R2B	28,632	0.6573	0	0.0000	0.9	6	0.4	28,632	0.6573	3.55	0.71	EACH DC
TD 2	13,877	0.3186	25,283	0.5804	0.9	6	0.4	39,160	0.8990	3.11		
CB 2B	28,632	0.6573	3,358	0.0771	0.9	6	0.4	31,990	0.7344	3.73		
CB 2C	14,460	0.3320	1,700	0.0390	0.9	6	0.4	16,160	0.3710	1.89		
											-	

PIPE FLOW = LEA	AVING STRUCTURE						
Pipe	Q (In Pipe)				•		
CB 1A	2.803						
CB1B	1.198						
CB1C	1.214						
CB1D	2.454						
TD 1	2.528						
AD 1	0.995						
DMH 1D	5.977						
R1A	1.748						
R1B	1.481						
R1C	1.481						
R1D	2.072						
DMH1a-c	12.761	* 22.9 for 100 Yr. see Hydrogr	raphs				
R2A	1.145						
CB 2A	1.746						
R2B	3.549						
DMH 2A-2C	6.440	* 8.47 for 100 Yr. see Hydrogra	aphs				
TD 2	3.113						
CB2B	3.734						
DMH 2D	6.848						
DMH 2F	8.500	* 8.499 100 Yr. See Hydrograp	hs				

OWNSPOUT

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.			Wednesday, Nov 16 2022	
CB1A				
Circular		Highlighted		
Diameter (ft)	= 1.00	Depth (ft)	= 0.51	
.,		Q (cfs)	= 2.800	
		Area (sqft)	= 0.40	
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 6.92	
Slope (%)	= 2.00	Wetted Perim (ft)	= 1.59	
N-Value	= 0.012	Crit Depth, Yc (ft)	= 0.72	
		Top Width (ft)	= 1.00	
Calculations		EGL (ft)	= 1.25	
Compute by:	Known Q			
Known Q (cfs)	= 2.80			

Channel Report

-			
Hydraflow Express Extension	Wednesday, Nov 16 2022		
CB1C			
Circular		Highlighted	
Diameter (ft)	= 1.00	Depth (ft)	= 0.32
		Q (cfs)	= 1.210
		Area (sqft)	= 0.22
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 5.56
Slope (%)	= 2.00	Wetted Perim (ft)	= 1.20
N-Value	= 0.012	Crit Depth, Yc (ft)	= 0.47
		Top Width (ft)	= 0.93
Calculations		EGL (ft)	= 0.80
Compute by:	Known Q		
Known Q (cfs)	= 1.21		

Channel Report

Hydraflow Express Extension	Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.		
CB1B			
Circular		Highlighted	
Diameter (ft)	= 1.00	Depth (ft)	= 0.32
		Q (cfs)	= 1.200
		Area (sqft)	= 0.22
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 5.51
Slope (%)	= 2.00	Wetted Perim (ft)	= 1.20
N-Value	= 0.012	Crit Depth, Yc (ft)	= 0.46
		Top Width (ft)	= 0.93
Calculations		EGL (ft)	= 0.79
Compute by:	Known Q		
Known Q (cfs)	= 1.20		

Hydraflow Express Extension	for Autodesk® Civil 3D® by Autodesk, Inc		Wednesday, Nov 16 2022
CB1D			
Circular		Highlighted	
Diameter (ft)	= 1.00	Depth (ft)	= 0.58
. ,		Q (cfs)	= 2.450
		Area (sqft)	= 0.47
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 5.17
Slope (%)	= 1.00	Wetted Perim (ft)	= 1.73
N-Value	= 0.012	Crit Depth, Yc (ft)	= 0.67
		Top Width (ft)	= 0.99
Calculations		EGL (ft)	= 1.00
Compute by:	Known Q		
Known Q (cfs)	= 2.45		

Hydraflow Express Extension	Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.		
AD1			
Circular		Highlighted	
Diameter (ft)	= 0.67	Depth (ft)	= 0.44
. ,		Q (cfs)	= 1.000
		Area (sqft)	= 0.25
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 4.07
Slope (%)	= 1.00	Wetted Perim (ft)	= 1.27
N-Value	= 0.012	Crit Depth, Yc (ft)	= 0.48
		Top Width (ft)	= 0.64
Calculations		EGL (ft)	= 0.70
Compute by:	Known Q		
Known Q (cfs)	= 1.00		

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

DMH1D

Circular		Highlighted	
Diameter (ft)	= 1.50	Depth (ft)	= 0.78
		Q (cfs)	= 5.980
		Area (sqft)	= 0.93
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 6.41
Slope (%)	= 1.00	Wetted Perim (ft)	= 2.42
N-Value	= 0.012	Crit Depth, Yc (ft)	= 0.95
		Top Width (ft)	= 1.50
Calculations		EGL (ft)	= 1.42
Compute by:	Known Q		
Known Q (cfs)	= 5.98		

Wednesday, Nov 16 2022

Channel Report

Hydraflow Express Extension	Wednesday, Nov 16 2022		
TD1			
Circular		Highlighted	
Diameter (ft)	= 1.00	Depth (ft)	= 0.59
		Q (cfs)	= 2.530
		Area (sqft)	= 0.48
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 5.23
Slope (%)	= 1.00	Wetted Perim (ft)	= 1.75
N-Value	= 0.012	Crit Depth, Yc (ft)	= 0.69
		Top Width (ft)	= 0.98
Calculations		EGL (ft)	= 1.02
Compute by:	Known Q		
Known Q (cfs)	= 2.53		

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.			Wednesday, Nov 16 2022
R1A			
Circular		Highlighted	
Diameter (ft)	= 0.67	Depth (ft)	= 0.52
()		Q (cfs)	= 1.750
		Area (sqft)	= 0.29
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 5.95
Slope (%)	= 2.00	Wetted Perim (ft)	= 1.45
N-Value	= 0.012	Crit Depth, Yc (ft)	= 0.61
		Top Width (ft)	= 0.56
Calculations		EGL (ft)	= 1.07
Compute by:	Known Q	.,	
Known Q (cfs)	= 1.75		

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.			Wednesday, Nov 16 2022	
R1B , C				
Circular		Hiahliahted		
Diameter (ft)	= 0.67	Depth (ft)	= 0.46	
		Q (cfs)	= 1.500	
		Area (sqft)	= 0.26	
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 5.81	
Slope (%)	= 2.00	Wetted Perim (ft)	= 1.31	
N-Value	= 0.012	Crit Depth, Yc (ft)	= 0.58	
		Top Width (ft)	= 0.62	
Calculations		EGL (ft)	= 0.98	
Compute by:	Known Q			
Known Q (cfs)	= 1.50			

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

DMH 1A,B,C - 100 YEAR

Circular		Highlighted	
Diameter (ft)	= 2.00	Depth (ft)	= 1.19
		Q (cfs)	= 22.90
		Area (sqft)	= 1.95
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 11.72
Slope (%)	= 2.00	Wetted Perim (ft)	= 3.53
N-Value	= 0.012	Crit Depth, Yc (ft)	= 1.71
		Top Width (ft)	= 1.96
Calculations		EGL (ft)	= 3.32
Compute by:	Known Q		
Known Q (cfs)	= 22.90		

Monday, Nov 21 2022

Hydraflow Express Extension	for Autodesk® Civil 3D® by Autodesk, Inc.		Wednesday, Nov 16 2022
R1D			
Circular		Highlighted	
Diameter (ft)	= 0.67	Depth (ft)	= 0.55
. ,		Q (cfs)	= 2.070
		Area (sqft)	= 0.31
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 6.68
Slope (%)	= 2.50	Wetted Perim (ft)	= 1.52
N-Value	= 0.012	Crit Depth, Yc (ft)	= 0.64
		Top Width (ft)	= 0.51
Calculations		EGL (ft)	= 1.24
Compute by:	Known Q		
Known Q (cfs)	= 2.07		

Elev (ft)

3.00

Hydraflow Express Extension	for Autodesk® Civil 3D® by Autodesk, Inc.		Wednesday, Nov 16 2022
CB2A			
Circular		Hiahliahted	
Diameter (ft)	= 1.00	Depth (ft)	= 0.39
()		Q (cfs)	= 1.750
		Area (sqft)	= 0.28
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 6.16
Slope (%)	= 2.00	Wetted Perim (ft)	= 1.35
N-Value	= 0.012	Crit Depth, Yc (ft)	= 0.57
		Top Width (ft)	= 0.98
Calculations		EGL (ft)	= 0.98
Compute by:	Known Q		
Known Q (cfs)	= 1.75		

Channel Report

Hydraflow Express Extensior	for Autodesk® Civil 3D® by Autodesk, Inc.		Wednesday, Nov 16 2022
R2B			
Circular		Highlighted	
Diameter (ft)	= 0.67	Depth (ft)	= 0.29
. ,		Q (cfs)	= 0.710
		Area (sqft)	= 0.15
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 4.83
Slope (%)	= 2.00	Wetted Perim (ft)	= 0.96
N-Value	= 0.012	Crit Depth, Yc (ft)	= 0.40
		Top Width (ft)	= 0.66
Calculations		EGL (ft)	= 0.65
Compute by:	Known Q	. /	

Known Q (cfs) = 0.71

Depth (ft)

2.00

Channel Report

Hydraflow Express Extension	Monday, Nov 21 2022		
DMH2B-100 YE	AR		
Circular Diameter (ft)	= 1.50	Highlighted Depth (ft)	= 0.78
		Q (cfs) Area (sqft)	= 8.500 = 0.93

Invert Elev (ft) Slope (%) N-Value = 100.00 = 2.00 = 0.012 Calculations Compute by: Known Q (cfs) Known Q = 8.50 Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft) EGL (ft) = 0.93 = 9.11 = 2.42 = 1.13 = 1.50 = 2.07

2.50 1.50 2.00 1.00 1.50 0.50 1.00 0.00 0.50 -0.50 0 1 2 3

Section

Reach (ft)

Channel Report

Hydraflow Express Extension	for Autodesk® Civil 3D® by Autodesk, Inc.		Wednesday, Nov 16 2022
R2A			
Circular		Highlighted	
Diameter (ft)	= 0.67	Depth (ft)	= 0.38
()		Q (cfs)	= 1.140
		Area (sqft)	= 0.21
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 5.50
Slope (%)	= 2.00	Wetted Perim (ft)	= 1.15
N-Value	= 0.012	Crit Depth, Yc (ft)	= 0.51
		Top Width (ft)	= 0.66
Calculations		EGL (ft)	= 0.85
Compute by:	Known Q		
Known Q (cfs)	= 1.14		

Reach (ft)

Hydraflow Express Extension	for Autodesk® Civil 3D® by Autodesk, Inc.		Wednesday, Nov 16 2022
CB2B			
Circular		Highlighted	
Diameter (ft)	= 1.00	Depth (ft)	= 0.80
		Q (cfs)	= 3.730
		Area (sqft)	= 0.67
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 5.54
Slope (%)	= 1.00	Wetted Perim (ft)	= 2.22
N-Value	= 0.012	Crit Depth, Yc (ft)	= 0.83
		Top Width (ft)	= 0.80
Calculations		EGL (ft)	= 1.28
Compute by:	Known Q		
Known Q (cfs)	= 3.73		

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

DMH2D

Circular		Highlighted	
Diameter (ft)	= 1.25	Depth (ft)	= 0.68
		Q (cfs)	= 6.850
		Area (sqft)	= 0.68
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 10.03
Slope (%)	= 3.00	Wetted Perim (ft)	= 2.07
N-Value	= 0.012	Crit Depth, Yc (ft)	= 1.06
		Top Width (ft)	= 1.25
Calculations		EGL (ft)	= 2.24
Compute by:	Known Q		
Known Q (cfs)	= 6.85		

Wednesday, Nov 16 2022

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.		Wednesday, Nov 16 202	
TD2			
Circular		Highlighted	
Diameter (ft)	= 1.00	Depth (ft)	= 0.54
		Q (cfs)	= 3.110
		Area (sqft)	= 0.43
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 7.15
Slope (%)	= 2.00	Wetted Perim (ft)	= 1.65
N-Value	= 0.012	Crit Depth, Yc (ft)	= 0.76
		Top Width (ft)	= 1.00
Calculations		EGL (ft)	= 1.34
Compute by:	Known Q		
Known Q (cfs)	= 3.11		

Hydraflow Express Extension	for Autodesk® Civil 3D® by Autodesk, Inc.		Monday, Nov 21 2022
DMH 2F-100YEA	R		
Circular		Highlighted	
Diameter (ft)	= 1.25	Depth (ft)	= 0.99
()		Q (cfs)	= 8.500
		Area (sqft)	= 1.04
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 8.15
Slope (%)	= 1.60	Wetted Perim (ft)	= 2.74
N-Value	= 0.012	Crit Depth, Yc (ft)	= 1.14
		Top Width (ft)	= 1.01
Calculations		EGL (ft)	= 2.02
Compute by:	Known Q		
Known Q (cfs)	= 8.50		

KELLY ENGINEERING GROUP, INC.

Zero Campanelli Drive-Braintree-MA 02184 Phone 781 843 4333

Attachment E Supporting Documents

NOAA Atlas 14, Volume 10, Version 3 Location name: Ayer, Massachusetts, USA* Latitude: 42.5626°, Longitude: -71.5335° Elevation: 238.93 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration				Average	recurrence	interval (ye	ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.325 (0.257-0.408)	0.385 (0.304-0.483)	0.483 (0.380-0.609)	0.564 (0.440-0.714)	0.675 (0.510-0.889)	0.759 (0.561-1.02)	0.847 (0.608-1.18)	0.949 (0.642-1.34)	1.10 (0.713-1.60)	1.22 (0.773-1.81)
10-min	0.461 (0.364-0.578)	0.545 (0.430-0.685)	0.683 (0.536-0.860)	0.798 (0.624-1.01)	0.956 (0.722-1.26)	1.07 (0.795-1.44)	1.20 (0.861-1.67)	1.34 (0.908-1.90)	1.56 (1.01-2.26)	1.73 (1.10-2.56)
15-min	0.542 (0.428-0.680)	0.641 (0.506-0.805)	0.804 (0.632-1.01)	0.939 (0.734-1.19)	1.13 (0.850-1.48)	1.26 (0.935-1.70)	1.41 (1.01-1.96)	1.58 (1.07-2.23)	1.83 (1.19-2.66)	2.04 (1.29-3.02)
30-min	0.736 (0.582-0.924)	0.872 (0.688-1.10)	1.09 (0.860-1.38)	1.28 (0.999-1.62)	1.53 (1.16-2.02)	1.72 (1.27-2.31)	1.92 (1.38-2.67)	2.15 (1.46-3.04)	2.49 (1.62-3.63)	2.78 (1.76-4.11)
60-min	0.931 (0.735-1.17)	1.10 (0.870-1.39)	1.39 (1.09-1.74)	1.62 (1.26-2.05)	1.94 (1.47-2.55)	2.18 (1.61-2.93)	2.44 (1.75-3.38)	2.73 (1.85-3.85)	3.16 (2.05-4.60)	3.51 (2.22-5.21)
2-hr	1.17 (0.932-1.46)	1.41 (1.12-1.76)	1.80 (1.43-2.25)	2.13 (1.67-2.67)	2.57 (1.96-3.37)	2.90 (2.17-3.89)	3.26 (2.37-4.53)	3.69 (2.50-5.17)	4.34 (2.82-6.27)	4.89 (3.11-7.19)
3-hr	1.34 (1.07-1.66)	1.63 (1.30-2.02)	2.09 (1.67-2.60)	2.48 (1.96-3.10)	3.01 (2.31-3.94)	3.41 (2.55-4.54)	3.83 (2.80-5.32)	4.35 (2.96-6.08)	5.15 (3.36-7.41)	5.84 (3.71-8.54)
6-hr	1.70 (1.37-2.09)	2.08 (1.67-2.55)	2.68 (2.15-3.31)	3.19 (2.54-3.95)	3.88 (2.99-5.04)	4.39 (3.32-5.83)	4.95 (3.64-6.83)	5.64 (3.85-7.81)	6.70 (4.38-9.56)	7.61 (4.85-11.0)
12-hr	2.15 (1.75-2.63)	2.62 (2.13-3.20)	3.38 (2.73-4.14)	4.01 (3.22-4.94)	4.88 (3.79-6.28)	5.53 (4.20-7.26)	6.22 (4.59-8.50)	7.08 (4.86-9.72)	8.38 (5.51-11.9)	9.51 (6.09-13.7)
24-hr	2.58 (2.11-3.13)	<mark>3.15</mark> (2.58-3.82)	4.08 (3.32-4.96)	4.85 (3.93-5.92)	<mark>5.91</mark> (4.62-7.55)	6.70 (5.12-8.73)	7.55 (5.60-10.2)	8.58 (5.92-11.7)	10.2 (6.71-14.3)	11.5 (7.41-16.5)
2-day	2.94 (2.43-3.53)	3.61 (2.98-4.34)	4.71 (3.87-5.68)	5.62 (4.59-6.81)	6.88 (5.41-8.72)	7.80 (6.01-10.1)	8.81 (6.58-11.9)	10.0 (6.96-13.6)	12.0 (7.91-16.7)	13.6 (8.77-19.3)
3-day	3.22 (2.67-3.84)	3.94 (3.26-4.71)	5.11 (4.22-6.14)	6.09 (4.99-7.34)	7.43 (5.87-9.37)	8.42 (6.51-10.9)	9.50 (7.12-12.7)	10.8 (7.51-14.6)	12.8 (8.52-17.8)	14.6 (9.42-20.6)
4-day	3.47 (2.89-4.14)	4.22 (3.51-5.03)	5.44 (4.50-6.50)	6.45 (5.30-7.75)	7.84 (6.21-9.85)	8.88 (6.87-11.4)	9.99 (7.49-13.3)	11.3 (7.90-15.2)	13.4 (8.91-18.6)	15.2 (9.82-21.4)
7-day	4.18 (3.50-4.95)	4.97 (4.16-5.88)	6.25 (5.21-7.43)	7.32 (6.06-8.74)	8.79 (7.00-10.9)	9.88 (7.68-12.5)	11.1 (8.29-14.5)	12.4 (8.69-16.6)	14.5 (9.67-19.9)	16.2 (10.5-22.7)
10-day	4.85 (4.08-5.72)	5.66 (4.76-6.68)	6.99 (5.85-8.27)	8.09 (6.72-9.62)	9.61 (7.67-11.9)	10.7 (8.35-13.5)	11.9 (8.95-15.6)	13.3 (9.34-17.6)	15.3 (10.2-20.9)	17.0 (11.0-23.6)
20-day	6.86 (5.82-8.02)	7.73 (6.55-9.04)	9.15 (7.72-10.7)	10.3 (8.65-12.2)	12.0 (9.59-14.6)	13.2 (10.3-16.4)	14.5 (10.8-18.5)	15.8 (11.1-20.7)	17.6 (11.8-23.8)	18.9 (12.3-26.2)
30-day	8.52 (7.27-9.92)	9.44 (8.04-11.0)	10.9 (9.28-12.8)	12.2 (10.3-14.3)	13.9 (11.2-16.8)	15.2 (11.9-18.7)	16.5 (12.4-20.9)	17.8 (12.6-23.3)	19.5 (13.1-26.2)	20.7 (13.5-28.4)
45-day	10.6 (9.08-12.3)	11.6 (9.91-13.4)	13.2 (11.2-15.3)	14.5 (12.3-17.0)	16.3 (13.2-19.6)	17.8 (13.9-21.7)	19.2 (14.3-23.9)	20.4 (14.5-26.5)	21.9 (14.9-29.4)	23.0 (15.0-31.4)
60-day	12.3 (10.6-14.2)	13.4 (11.5-15.4)	15.1 (12.9-17.5)	16.5 (14.0-19.2)	18.4 (14.9-22.0)	19.9 (15.7-24.2)	21.4 (16.0-26.5)	22.6 (16.2-29.3)	24.1 (16.4-32.2)	25.1 (16.4-34.1)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

1 of 3

Average recurrence interval

(years)

- 1

2 5 10

25 50

100 200 500

— 1000

Duration

5-min 10-min

15-min

30-min

60-min

2-hr

3-hr

6-hr

12-hr

24-hr

2-day

3-day

4-day

7-day

10-day

 20-day 30-day

45-day - 60-day

NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Wed Oct 26 12:52:38 2022

Back to Top

Maps & aerials

NRCS HYDROLOGIC SOIL TYPE	APPROX. SOIL TEXTURE	TARGET DEPTH FACTOR (F)
А	sand	0.6-inch
В	loam	0.35-inch
С	silty loam	0.25-inch
D	clay	0.1-inch

Attention must be given to ensure consistency in units. In particular, the Target Depth Factors must be converted to feet.

When a site contains multiple Hydrologic Soil Groups, determine the *Required Recharge Volume* for each impervious area by Hydrologic Soil Group and then add the volumes together.

Example: Assume a ten (10) acre site. 5.0 acres are proposed to be developed for a retail use. A section of the entrance roadway is to be bridged over a stream that is classified as land under water. As such, the bridging is subject to the Wetlands Protection Act Regulations, and the Stormwater Management Standards apply to stormwater runoff from all proposed roads, parking areas, and rooftops. Of the 5.0 acres proposed to be developed, 2 acres of impervious surfaces are proposed atop Hydrologic Soil Group (HSG) "A" soils, 1 acre of impervious surfaces atop HSG "B" soil, 1.5 acres of impervious surfaces atop HSG "C" soil, and 0.5 acres are proposed to be landscaped area. The remaining 5.0 acres, located on HSG "A" soil, are proposed to remain forested. Determine the *Required Recharge Volume*.

Solution: The Required Recharge Volume is determined only for the impervious surfaces. The 5.0-acre forested area and the 0.5-acre landscaped area are not impervious areas. Although converted from forest, landscaped area is pervious area for purposes of Standard 3. Use Equation (1) to determine the Required Recharge Volume for each Hydrologic Soil Group covered by impervious area. Add together the Required Recharge Volumes determined for each HSG.

Rv = F x impervious area

 $Rv = [(F_{HSG "A"}) (Area_1)] + [(F_{HSG "B"}) (Area_2)] + [(F_{HSG "C"})(Area_3)] + [(F_{HSG "D"})(Area_4)] Equation (2)$

Rv = [(0.6-in/12)(2 acres)] + [(0.35-in/12)(1 acre)] + [(0.25-in/12)(1.5 acres)] + [(0.1-in/12)(0 acres)]

 $Rv = 0.1605 \ acre-feet$

Rv = 0.1605 acre-feet x 43560 square feet/acre-feet = 6,991 cubic feet or 258.9 cubic yards

Table 2.3.2: Recharge Target Depth by Hydrologic Soil Group

Type III 24-hr Rainfall=1.29"

Table 2.3.3. 1982 Rawls Rates¹⁸

Texture Class	NRCS Hydrologic Soil Group (HSG)	Infiltration Rate Inches/Hour
Sand	A	8.27
Loamy Sand	А	2.41
Sandy Loam	В	1.02
Loam	В	0.52
Silt Loam	С	0.27
Sandy Clay Loam	С	0.17
Clay Loam	D	0.09
Silty Clay Loam	D	0.06
Sandy Clay	D	0.05
Silty Clay	D	0.04
Clay	D	0.02

¹⁸ Rawls, Brakensiek and Saxton, 1982

Volume 3: Documenting Compliance with the Massachusetts Stormwater Management Standards

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

	T	1		
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
53A	Freetown muck, ponded, 0 to 1 percent slopes	B/D	33.1	30.0%
103C	Charlton-Hollis-Rock outcrop complex, 8 to 15 percent slopes	В	4.6	4.2%
104C	Hollis-Rock outcrop- Charlton complex, 0 to 15 percent slopes	D	0.5	0.4%
104D	Hollis-Rock outcrop- Charlton complex, 15 to 25 percent slopes	D	5.7	5.2%
602	Urban land		29.7	26.9%
653	Udorthents, sandy		30.9	28.0%
655	Udorthents, wet substratum		5.9	5.4%
Totals for Area of Intere	est		110.4	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

NOTES:

- 1. BASE MAP DEVELOPED FROM UNTITLED, UNDATED SITE PLAN ANNOTATED WITH PROPOSED BUILDING ADDITIONS, PROVIDED BY DACON CORPORATION.
- 2. TEST BORING LOCATIONS ESTABLISHED AT THE SITE BY NORTHEAST GEOTECHNICAL, INC. PERSONNEL USING TAPING AND PACING FROM EXISTING SITE FEATURES. EXPLORATION LOCATIONS SHOWN ON THIS PLAN SHOULD BE CONSIDERED APPROXIMATE.
- 3. TEST BORINGS OBSERVED AND LOGGED BY NORTHEAST GEOTECHNICAL, INC. PERSONNEL.

LEGEND:

TEST BORINGS PERFORMED BY DRILEX ENVIRONMENTAL, INC. OF AUBURN, MA ON AUGUST 29, 30 AND 31, 2022.

NORTHEAST GEOTECHNICAL, INC.

PROPOSED NASOYA FOODS BUILDING ADDITIONS

1 NEW ENGLAND WAY

AYER, MA

SUBSURFACE EXPLORATION LOCATION PLAN

Project No.: O493.00	Drawn By: JJP	Reviewed By: G. OLSON, P.E.
Date: 9/3/2022	Scale: 1"=80'	Figure No.: 1

JACK POWERS, 09/05/2022, 15:28:51 | FILE: C:\NORTHEAST\2022\0493.00 AYER\PLANS\049300F01.DWG

					Ν	ORTHE	EAST GEO	DTEC	HNICAL, INC	C .		
	TES	т во	RING	LOG		Project:	Proposed N Building 1 New En Aye	asoya Fo Addition gland Wa	oods s ay	Test Boring N Paç File N Reviewed	No.: B-1 ge: 1 of 1 No.: O493.00 By: Glenn Olson, P.E.	
	Bori	ng Co.		Drilex E	nvironmenta	al, Inc.	-		Date/Weather:	8-31-2022 / 0	Clear 60s to 80s °F	
	Fo	reman:		C	hris Hogan		North	east Geo	otechnical Observer:	Christia	an Rice, P.E.	
Borin	g Equi	pment:	Mobil	e B-57	Truck-Mount	ed Drill Rig	-	Т	est Boring Location:	See Subsurface Ex	xploration Location Plan	
			314-1		. Hollow-Stel	m Augers	-	Groun	d Surface Elevation:	22	25± feet	
			Sam	nle Dat	500011, 1401 a	D. Auto Hai				I		
	No.	Depth	Pen.	Rec.	Blows per (6 in. Rem.	Strata Change		S	Sample Description		
						1	Pavement, 0.3'±	3.5± inc	hes BITUMINOUS C	ONCRETE		
	S-1	0.5-2.5	24"	11"	5-11-7-1	1		Medium	i dense, light brown,	F/C SAND, some F/0	C Gravel, little (-) Silt,	
							Existing Fill	moist				
5'	S-2	2.5-4.5	24"	18"	12-17-18-	.19	5'±	Dense,	tan, F/M SAND, som	e Silt, trace F. Grave	l, moist	
	S-3	5-7'	24"	18"	5-7-5-6	;	-	Medium	i dense, tan, F/M SAI	SAND, some Silt, moist		
	S-4	7-9'	24"	20"	5-5-4-4	2		Loose, t	tan, F/M SAND, som	e Silt, wet		
							Natural Silty					
10'							Sand					
	S-5	10-12'	24"	19"	2-2-3-3		Loose, tan, F/M SAND, some Silt, wet					
							-					
15'							15'±					
	S-6	15-17'	24"	10"	4-9-16-1	2		Medium	i dense, gray-brown,	F/C SAND, some (+) F/C Gravel, little (+) Silt,	
							-	wet				
20'							Sand and					
20	S-7	20-22'	24"	12"	10-13-16-	-16	Gravel					
		-				-	-	Medium	i dense, gray-brown,	F/C SAND, some F/	C Gravel, some Silt, wet	
25'	_					3,4	25'±		Dette	m of boring of OF I fo	at	
							-		Bollo	In or boring at 25± le		
Notes	:					_	, ,, , , ,		Standard Penetration	Density	Abbreviations	
1)	Auger	ed to a	pproxir ment	nately C	0.5± teet belo	ow ground s	urtace (bgs) thre	ough	(Blows/Foot)		F = Fine	
2)	Groun	dwater	encou	ntered :	at 7+ feet ba	s while sam	nlina				M = Medium	
3)	Auger	ed to 2	5± feet	bas. At	tempted to s	ample but a	approximately 2:	± feet of	0 -4	Very Loose	C = Coarse	
-,	soil ble	own int	o auge	rs.						-	F/M = Fine to Medium	
4)	Boring	ı termir	nated a	t 25± fe	et bgs.				4 - 10	Loose	F/C = Fine to Coarse	
									10 - 30	Med. Dense	Proportions Used	
											Trace (T) = 0 - 10%	
									30 - 50	Dense	Little (Li) = 10 - 20%	
									501	Von Doros	Some (So) = $20 - 35\%$	
<u> </u>									50+	very Dense	AIND = 35-50%	

					Ν	ORTH	EAST GEO	DTEC	HNICAL, INC		
	TES	T BO	RING	LOG		Project:	Proposed N Building 1 New En Aye	asoya Fo Addition gland W r, MA	oodss say	Test Boring N Pag File N Reviewed	lo.: B-2 ge: 1 of 1 lo.: 0493.00 By: Glenn Olson, P.E.
	Bori	ng Co.		Drilex E	nvironmenta	II, Inc.			Date/Weather:	8-30-2022 / C	lear, 70s to 90s °F
	Fo	reman:		C	hris Hogan	,	– North	east Geo	otechnical Observer:	Christia	n Rice, P.F.
Borin	a Faui	oment:	Mobil	e B-57	Fruck-Mount	ed Drill Rig		T	est Boring Location:	See Subsurface Ex	coloration Location Plan
20111	9 - 9~		31⁄4-i	nch LD	Hollow-Ster	m Augers	-	Groun	d Surface Flevation:	22	6+ feet
			2" O.C). Split S	Spoon, 140 II	b. Auto Har	- mmer		Depth to Water:	9	±feet
			Sam	ple Dat	a						
	No.	Depth	Pen.	Rec.	Blows per 6	6 in. Rem.	Strata Change		S	ample Description	
						1	Pavement. 0.3'±	4± inche	es BITUMINOUS CO	NCRETE	
	S-1	0.5-2.5	24"	18"	6-12-14-1	13	,	Medium	dense, tan, F/M SAN	ND. little (-) Silt. trace	e F. Gravel, moist
		0.0 2.0			•		-				
	S-2	2.5-4.5	24"	17"	7-7-5-5		-				
5'							Existing Fill	weaturn	i dense, lan, f/m SAi	ND, trace (+) Sill, trac	ce (+) F. Gravel, moist
	S-3	5-7'	24"	18"	2-1-1-1			Very loc	ose, tan, F/M SAND, t	trace Silt, trace F. Gr	avel, trace (-) Roots,
							_	moist			
	S-4	7-9'	24"	17"	2-4-5-5		_	Loose, t	an, F/C SAND, trace	Silt, moist	
							9'±				
10'						2					
	S-5	10-12'	24"	15"	3-3-3-5			Loose, t	an, SILT, trace (-) F.	Sand, wet	
							Loose, tan, SILT, trace (-) F. Sand, wet				
15'											
	S-6	15-17'	24"	14"	3-5-4-3		Loose, tan, SILT, trace (-) F. Sand, wet				
							Natural Silt				
							_				
20'							-				
	S-7	20-22'	24"	10"	2-4-3-4			Loose, t	an, SILT, trace (-) F.	Sand, wet	
							-				
							-				
							-				
25'							25'±				
	S-8	25-27'	24"	4"	3-7-8-10)		Medium	dense, gray, F/C SA	ND and F/C GRAVE	E, little (+) Silt, wet
							Natural Silty				
							Gravel				
	S-9	30-32'	24"	15"	5-12-16-1	15 3	32'±	Medium	dense, gray, F/C SA	ND and F/C GRAVE	L, some (-) Silt, wet
Notes:									Standard Penetration	Density	Abbreviations
1)	Auger	ed to a	pproxir	nately 0	.5± feet belo	w ground s	surface (bgs) thro	ough	Resistance	Density	
	existin	ig pave	ment.						(Blows/Foot)		F = Fine
2)	Groun	dwater	encou	ntered a	at 9± feet bg	s while drill	ing.				M = Medium
3)	Boring	termin	ated a	t 32± fe	et bgs.				0 -4	Very Loose	C = Coarse
	-										F/M = Fine to Medium
									4 - 10	Loose	F/C = Fine to Coarse
											Proportions Used
									10 - 30	Med. Dense	
											Trace (T) = 0 - 10%
									30 - 50	Dense	Little (Li) = 10 - 20%
											Some (So) = 20 - 35%
									50+	Very Dense	AND = 35-50%

TEST BORING LOG Project: Proposed Nasoya Foods Building Additions in New Fagared Way Test Boring No: B-3 Page: Boring Co. Foreman: Boring Equipment: Boring Equipment: String LD. Split Spoon, 140 Ib. Auto Hammer DateWeather: String LD. Holdow-Stem Augers Christ Nagers DateWeather: Berling Equipment: String LD. Holdow-Stem Augers Test Boring Location: Z242 Lear. 70s U 805 F Berling Equipment: Boring Equipment: String LD. Holdow-Stem Augers Test Boring Location: Z242 Lear. Berling Equipment: Berling Equipment: String LD. Holdow-Stem Augers Test Boring Location: Z242 Lear. Berling Equipment: Berling Equipment: String LD. Holdow-Stem Augers Test Boring Location: Z242 Lear. Berling Equipment: Berling Equipment: String LD. Holdow-Stem Augers Test Boring Location: Z242 Lear. Berling Equipment: Berling Equipment: String Equipment						N	IORTH	ΗE	AST GEC	DTEC	HNICAL, INC) .		
Boring Co. Foreman: Drilex Environmental, Inc. Date/Weather: 8-29-202 / Clear, 70s to 80s 'F Boring Equipment: Mobile BC7 Truck-Mounded Drill Rg. 33k-Inch ID. Hollow-Stem Augers Northeast Geotechnical Observer: Christian Rice, P.E. 2 O. D. Spith Spon, 140 Ib. Aub Hammer Ground Surface Elevation: See Subsurface Exploration Location Pie Test Boring Location See Subsurface Exploration Location Pie Sample Data Smaple Data Strata Change Sample Description 244 feet So 1 0.5-1.3 9' 9' 6-50.03' 2.3 Eustrag Fill, 13:2 Brown, F/C SAND, some F/C Gravel, little (+) Sill, moist S' Image: Strata Change Sample Description Bottom of boring at 1.3:2 feet S' Image: Strata Change Sample Description 10' Image: Strata Change Bottom of boring at 1.3:2 feet 20' Image: Strata Change Bottom of boring at 1.3:2 feet 10' Image: Strata Change Bottom of boring at 1.3:2 feet 20' Image: Strata Change Bottom of boring at 1.3:2 feet 20' Image: Strata Change Bottom of boring at 1.3:2 feet 20' Image: Strata Change Bottom of boring at 1.3:2 feet 20' Image: Strata Change Bottom of boring at 1.3:2 feet 20' Image: Strata Change Bottom of boring at 1.3:		TES	T BOI	RING	LOG		Project	::	Proposed Na Building J 1 New Eng Aver	asoya Fo Addition gland W	oods s ay	Test Boring N Pag File N Reviewed	No.: B-3 ge: 1 of 1 No.: O493.00 By: Glenn Olson, P.E.	
Northeast Geotechnical Observer: Christian Rice, P.E. Total-Mounded Drill Rig 33-inch LD: Hollow-Stern Augers Total Subscription See Subscription Sample Data <		Bori	ng Co.		Drilex E	nvironment	al, Inc.		, ,	,	Date/Weather:	8-29-2022 / C	lear, 70s to 80s °F	
Baring Equipment: Mobile 5-57 Truck Mounted Drill Rig 38-inch LD. Hollow-Stem Auges. Test Boring Location: See Subsurface Experiation Location Pla Ground Surface Elevation: 22 CD. Split Spoon, 140 Ib. Auto Hammer Depth Volke: Somo Observed Sample Data Sample Data <		Fo	reman:		C	hris Hogan	,		North	east Geo	otechnical Observer:	Christia	an Rice. P.E.	
Ground Surface Elevation: 224± feet 200. Spit Spoor, 140 ib. Auto Hammer Depth to Water: None Observed Sample Data Strata Change Sample Description Sample Data Strata Change Sample Description Sample Data Strata Change Sample Description Sample Data Strata Change Sample Data Sample Description Sample Data Sample Description Sample Data Sample Description Sample Data Sample Description Sample Data Bata Bata Sample Data Sample Description Sample Data <th cols<="" td=""><td>Borin</td><td>a Eaui</td><td>pment:</td><td>Mobil</td><td>e B-57 ⁻</td><td>Truck-Moun</td><td>ted Drill F</td><td>Ria</td><td></td><td>T</td><td>est Boring Location:</td><td>See Subsurface Ex</td><td>xploration Location Plan</td></th>	<td>Borin</td> <td>a Eaui</td> <td>pment:</td> <td>Mobil</td> <td>e B-57 ⁻</td> <td>Truck-Moun</td> <td>ted Drill F</td> <td>Ria</td> <td></td> <td>T</td> <td>est Boring Location:</td> <td>See Subsurface Ex</td> <td>xploration Location Plan</td>	Borin	a Eaui	pment:	Mobil	e B-57 ⁻	Truck-Moun	ted Drill F	Ria		T	est Boring Location:	See Subsurface Ex	xploration Location Plan
Image: Subscription Sample Deal Stata Change Sample Description None Observed 1 Pavement, 0.31 42 inches BITUMINOUS CONCRETE Sample Description S-1 0.5-1.3 9' 9'' 5-50/3'' 2.3 Exelling Fill, 1.33 Brown, F/C SAND, some F/C Gravel, Ittle (+) Sitt. moist 5' Image: Sample Description Image: Sample Description Bottom of boring at 1.32 feet 10' Image: Sample Description Image: Sample Description Bottom of boring at 1.32 feet 10' Image: Sample Description Image: Sample Description Bottom of boring at 1.32 feet 20' Image: Sample Description Image: Sample Description Image: Sample Description 20' Image: Sample Description Image: Sample Description Image: Sample Description Notes: Image: Sample Description Image: Sample Description Image: Sample Description Notes: Image: Sample Description Image: Sample Description Image: Sample Description Notes: Image: Sample Description Image: Sample Description Image: Sample Description 1) Augered to approximately 0.5s feet below ground su		0 1		3¼-i	nch I.D	. Hollow-Ste	m Augers	3		Groun	d Surface Elevation:	22	24± feet	
No. Depth Pen. Rec. Blows per 6 in. Rem Strata Change Sample Description S.1 0.5-13 9" 9" 5-50/3" 2,3 Existing Fill. 133 Brown, F/C SAND, some F/C Gravel, little (+) Sitt, moist 5" 1 1 1 Pavement. 0.3* 4± inches BITUMINOUS CONCRETE Bottom of boring at 1.3± feet 5" 1 1 1 1 Existing Fill. 133 Brown, F/C SAND, some F/C Gravel, little (+) Sitt, moist 10" 1 1 1 1 1 1 10" 1 1 1 1 1 1 10" 1 1 1 1 1 1 10" 1 1 1 1 1 1 1 20" 1 1 1 1 1 1 1 1 1 1 21 1 1 1 1 1 1 1 1 1 1 1 1				2" O.C). Split S	Spoon, 140	lb. Auto H	lamr	ner		Depth to Water:	None	Observed	
No. Depth Pen. Rec. Biows per 6 in. Rem. Biows per 6 in. fam. S-1 0.5-1.3 9' 9' 5-50/3' 2.3 Exiting Fill. 1.3:2 Brown. F/C SAND. some F/C Gravel, little (+) Silt. moist 5' Image: Silt of the second seco				Sam	ple Dat	a			Strata Change		c	ample Description		
S.1 0.5-1.3 9" 9" 5-50/3" 2.3 Existing Fill, 13:8 Brown, F/C SAND, some F/C Gravel, little (*) Silt, moist 5' Bottom of boring at 1.3:1 feet Bottom of boring at 1.3:1 feet 5' Bottom of boring at 1.3:1 feet 10' Bottom of boring at 1.3:1 feet 20' Bottom of boring bit feet 20' B		No.	Depth	Pen.	Rec.	Blows per	6 in. Re	m. `	Strata Onlange					
S1 0.5-1.3 9" 9" 5-50/3" 2.3 Examp Fill. 1.32 Brown, F/C SAND, some F/C Gravel, ittle (+) Silt, moist 5' Bottom of boring at 1.32 feet Bottom of boring at 1.32 feet 10' Bottom of boring at 1.32 feet 10' Bottom of boring at 1.32 feet 20' Bottom of boring at 1.32 feet 21' Bottom of boring at 1.32 feet base 10 Bottom of boring at 1.32 feet base. Offset boring 52 feet 22' Boring terminated at 1.32 feet base. 10 C = Carse F/M = Fine to Mediu F/C = Fine to Coars 110 Boring terminated at 1.32 feet base.							1	F	Pavement, 0.3'±	4± inche	es BITUMINOUS CO	NCRETE		
5' Bottom of boring at 1.32 feet 5' Bottom of boring at 1.32 feet 10' Bottom of boring at 1.32 feet 20' Bottom of boring at 1.32 feet balow ground surface (bgs) through existing pavement. 20' Boring terminated at 1.32 feet bgs. Offset boring 52 feet southwest then drilled as B-3A (see B-3A test boring log). 3) Boring terminated at 1.32 feet bgs. 10' C = Coarse FN = Fine to Mediu F(C = Fine to Coarse F(C = Fine		S-1	0.5-1.3	9"	9"	5-50/3	"2,	3 I	Existing Fill, 1.3'±	Brown,	F/C SAND, some F/0	C Gravel, little (+) Silt	, moist	
5' Image: Standard Penetration Resistance Density Abbreviations 10' Image: Standard Penetration Resistance Density Abbreviations 20' Image: Standard Penetration Resistance Density Abbreviations 20' Image: Standard Penetration Resistance Density Abbreviations 20' Image: Standard Penetration Resistance Density Abbreviations 25' Image: Standard Penetration Resistance Density Abbreviations 26' Image: Standard Penetration Resistance Density Abbreviations 27' Image: Standard Penetration Resistance Density Abbreviations 28' Image: Standard Penetration Resistance Density Abbreviations 29' Image: Standard Penetration Resistance Density Abbreviations 29' Image: Standard Penetration Resistance Density Abbreviations 29' Image: Standard Penetration Resistance Density Abbreviations 20' Image: Standard Penetration Resistance Image: Standard Penetration Resistance Image: Standard Penetration Resistance 20' Image: Standard Penetration Resistance Image: Standard											Bottor	m of boring at 1.3± fe	et	
5' Image: Signal of the second se														
Notes: 10 Standard Penetration Resistance Density Abbreviations 20' 10' <t< td=""><td>5'</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	5'													
Notes: 1 Augered to approximately 0.5± feet below ground surface (bgs) through existing pavement. Standard Penetration Resistance Density Abbreviations 20' 4														
Notes: 10 Standard Penetration Resistance Density Abbreviations 20' 4 10 4 4 4 10 4 4 10 4 4 10 4 4 10 4 4 10 4 4 10 4 4 10 4 4 10 5 6 6 7 6 6 7 6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6														
10' Interview														
10' Image: Standard Penetration Resistance Density Abbreviations 20' Image: Standard Penetration Resistance Image: Standard	10													
Ist Image: Standard Penetration Resistance Density Abbreviations 20' Image: Standard Penetration Resistance Density Abbreviations 25' Image: Standard Penetration Resistance Density Abbreviations 25' Image: Standard Penetration Resistance Density Abbreviations 15 Image: Standard Penetration Resistance Density Abbreviations 25' Image: Standard Penetration Resistance Density Abbreviations 10 - 10 Image: Standard Penetration Resistance Density Abbreviations 10 - 10 Image: Standard Penetration Resistance Density Abbreviations 10 - 10 Image: Standard Penetration Resistance Image: Standard Penetration Resistance Image: Standard Penetration Resistance 10 - 10 Image: Standard Penetration Resistance Image: Standard Penetration Resistance Image: Standard Penetration Resistance 10 - 10 Image: Standard Penetration Resistance Image: Standard Penetration Resistance Image: Standard Penetration Resistance 10 - 20 Image: Standard Penetration Resistance Image: Standard Penetration Resistance Image: Standard Penetration Resistance 10 - 20 Image: Standard P	10 [.]													
Notes: 1.31 Augered to approximately 0.5± feet below ground surface (bgs) through existing pavement. Standard Penetration Resistance Density Abbreviations 20' 25' 26' 26' 27'														
15' Image: Standard Penetration Density Abbreviations 20' Image: Standard Penetration Image: Standard Penetration Image: Standard Penetration 25' Image: Standard Penetration Image: Standard Penetration Image: Standard Penetration 25' Image: Standard Penetration Image: Standard Penetration Image: Standard Penetration 25' Image: Standard Penetration Image: Standard Penetration Image: Standard Penetration 10 Augered to approximately 0.5± feet below ground surface (bgs) through existing pavement. Image: Standard Penetration Image: Standard Penetration 2) Sampler and auger refusal at 1.3± feet bgs. Offset boring 5± feet southwest then drilled as B-3A (see B-3A test boring log). Image: Standard Penetration Image: Standard Penetration 3) Boring terminated at 1.3± feet bgs. Image: Standard Penetration Image: Standard Penetration Image: Standard Penetration 4 - 10 Loose F = Fine Image: Standard Penetration Image: Standard Penetration 3) Boring terminated at 1.3± feet bgs. Image: Standard Penetration Image: Standard Penetration Image: Standard Penetration 4 - 10 Loose F/C = Fine to Coarse F/M = Fine to Medium Ima														
15' Image: Standard Penetration Resistance Density Abbreviations 20' Image: Standard Penetration Resistance Image: Standard														
Notes: Density Abbreviations 25'	15'													
20' Image: Construction of the second se	15													
20' Image: Construction of the second se														
20'								_						
20' Image: Construction of the second se														
25' 25' 26' 26' 27' 2	20'													
25' 2														
25' 2														
25' Image: Standard Penetration Resistance 1) Augered to approximately 0.5± feet below ground surface (bgs) through existing pavement. 2) Sampler and auger refusal at 1.3± feet bgs. Offset boring 5± feet southwest then drilled as B-3A (see B-3A test boring log). 3) Boring terminated at 1.3± feet bgs. Med Dense														
25' Image: Standard Penetration Resistance Density Abbreviations Notes: Image: Standard Penetration Resistance Density Abbreviations 1) Augered to approximately 0.5± feet below ground surface (bgs) through existing pavement. Standard Penetration Resistance Density Abbreviations 2) Sampler and auger refusal at 1.3± feet bgs. Offset boring 5± feet southwest then drilled as B-3A (see B-3A test boring log). Image: Group Control of Cont														
Notes: Standard Penetration Density Abbreviations 1) Augered to approximately 0.5± feet below ground surface (bgs) through existing pavement. Standard Penetration Density Abbreviations 2) Sampler and auger refusal at 1.3± feet bgs. Offset boring 5± feet southwest then drilled as B-3A (see B-3A test boring log). 0 -4 Very Loose F = Fine 3) Boring terminated at 1.3± feet bgs. 4 - 10 Loose F/M = Fine to Mediu 10 - 30 Med Dense Proportions Used	25'													
Notes: Standard Penetration Resistance Density Abbreviations 1) Augered to approximately 0.5± feet below ground surface (bgs) through existing pavement. Standard Penetration Resistance Density Abbreviations 2) Sampler and auger refusal at 1.3± feet bgs. Offset boring 5± feet southwest then drilled as B-3A (see B-3A test boring log). 0 -4 Very Loose F = Fine 3) Boring terminated at 1.3± feet bgs. F/M = Fine to Medium 10 - 30 Med Dense Proportions Used														
Notes: Standard Penetration Resistance Density Abbreviations 1) Augered to approximately 0.5± feet below ground surface (bgs) through existing pavement. Standard Penetration Resistance Density Abbreviations 2) Sampler and auger refusal at 1.3± feet bgs. Offset boring 5± feet southwest then drilled as B-3A (see B-3A test boring log). 0 -4 Very Loose F = Fine 3) Boring terminated at 1.3± feet bgs. F/M = Fine to Medium C = Coarse F/M = Fine to Medium 4 - 10 Loose F/C = Fine to Coarse Proportions Used														
Notes: Standard Penetration Resistance Density Abbreviations 1) Augered to approximately 0.5± feet below ground surface (bgs) through existing pavement. Standard Penetration Resistance Density Abbreviations 2) Sampler and auger refusal at 1.3± feet bgs. Offset boring 5± feet southwest then drilled as B-3A (see B-3A test boring log). 0 -4 Very Loose F = Fine 3) Boring terminated at 1.3± feet bgs. F/M = Fine to Medium 4 - 10 Loose F/M = Fine to Coarse 10 - 30 Med Dense Proportions Used														
Notes: Standard Penetration Resistance Density Abbreviations 1) Augered to approximately 0.5± feet below ground surface (bgs) through existing pavement. Image: Standard Penetration Resistance Density Abbreviations 2) Sampler and auger refusal at 1.3± feet bgs. Offset boring 5± feet southwest then drilled as B-3A (see B-3A test boring log). Image: Genetic approximately 0.5± feet bgs. Image: Genetic approximat														
Standard Penetration Resistance Density Abbreviations 1) Augered to approximately 0.5± feet below ground surface (bgs) through existing pavement. Image: Standard Penetration Resistance Density Abbreviations 2) Sampler and auger refusal at 1.3± feet bgs. Offset boring 5± feet southwest then drilled as B-3A (see B-3A test boring log). Image: Group and Group														
 Augered to approximately 0.5± feet below ground surface (bgs) through existing pavement. Sampler and auger refusal at 1.3± feet bgs. Offset boring 5± feet southwest then drilled as B-3A (see B-3A test boring log). Boring terminated at 1.3± feet bgs. Boring terminated at 1.3± feet bgs. Heat boring log). Heat boring log).<td>Notes:</td><td>A</td><td>od to ci</td><td>nrevi</td><td>notoki</td><td>Et foot he</td><td>011/ 05011-</td><td>d</td><td>rfaga (bra) three</td><td>uch</td><td>Standard Penetration Resistance</td><td>Density</td><td>Abbreviations</td>	Notes:	A	od to ci	nrevi	notoki	Et foot he	011/ 05011-	d	rfaga (bra) three	uch	Standard Penetration Resistance	Density	Abbreviations	
2) Sampler and auger refusal at 1.3± feet bgs. Offset boring 5± feet southwest then drilled as B-3A (see B-3A test boring log). 0 -4 Very Loose C = Coarse 3) Boring terminated at 1.3± feet bgs. 4 - 10 Loose F/C = Fine to Mediu 10 - 30 Med Dense Proportions Used	(1	Auger	eu to ap la nave	uproxir ment	natery 0	.ot leet bel	ow groun	u sui	nace (bgs) thro	uyn	(Blows/Foot)		E = Fine	
2) Complete and auger relation and auger relation at 1.52 reet bys. Onset boring 52 reet $0 -4$ Very Loose $C = Coarse$ 3) Boring terminated at 1.3± feet bgs. $4 - 10$ Loose $F/C = Fine to Mediu 10 - 30 Med Dense Proportions Used $	2)	Same	lor and	augor	refued	at 1 3± fact	has Offa	ot ha	oring 5+ foot				M = Medium	
3) Boring terminated at $1.3\pm$ feet bgs. 4 - 10 Loose $F/C = Fine to Mediu F/C = Fine to Coarse10 - 30 Med Dense$	<i>∠)</i>	south	vest the	augei en drille	ed as R	-3A (see B-:	3A test br	orina	loa).		0 -4	Verv Loose	C = Coarse	
4 - 10 $10 - 30$ Med Dense $F/C = Fine to Module Proportions Used$	3)	Boring	1 termin	ated of	t 1 3+ fe	et has			37		V T	1019 20000	F/M = Fine to Medium	
10 - 30 Med Dense Proportions Used	3)	Donne		aleu a	C 1.0± 16	Joi bys.					4 - 10	Loose	F/C = Fine to Coarse	
10 - 30 Med Dense Proportions Used														
											10 - 30	Med. Dense	Proportions Used	
Trace (T) = 0 - 10%													Trace (T) = 0 - 10%	
30 - 50 Dense Little (Li) = 10 - 209											30 - 50	Dense	Little (Li) = 10 - 20%	
Some (So) = 20 - 35													Some (So) = 20 - 35%	
50+ Very Dense AND = 35-50%											50+	Very Dense	AND = 35-50%	

					Ν	ORTH	EAST GEO	DTEC	HNICAL, INC	2.			
	TES	T BO	RING	LOG		Project:	Proposed N Building 1 New Er Aye	asoya Fo Addition Igland W r, MA	oodss say	Test Boring N Pag File N Reviewed	No.: B-3A ge: 1 of 1 No.: O493.00 By: Glenn Olson, P.E.		
	Bori	ng Co.		Drilex E	nvironmenta	al, Inc.	_		Date/Weather:	8-29-22 to 8-30-2	2 / Clear, 70s to 80s °F		
	For	eman:		C	Chris Hogan		 North	east Ge	otechnical Observer:	Christia	an Rice, P.E.		
Borin	a Equi	oment:	Mobil	e B-57	Truck-Mount	ted Drill Ri	<u> </u>	T	est Boring Location:	See Subsurface Ex	xploration Location Plan		
	3 - 11		3¼-i	nch I.D.	. Hollow-Ste	m Augers	<u>.</u>	Groun	d Surface Elevation:	22	24± feet		
			2" O.C). Split S	Spoon, 140 I	b. Auto Ha	ammer		Depth to Water:	6.	5± feet		
			Sam	nple Dat	a								
	No.	Depth	Pen.	Rec.	Blows per	6 in. Ren	- Strata Change		5	Sample Description			
						-	Pavement, 0.3'±	4± inch	es BITUMINOUS CO	NCRETE			
	S-1	0.5-2.5	24"	17"	6-12-14	-8		Medium	dense, brown, F/C S	SAND, some (+) F/C	Gravel, some Silt, moist		
5'	S-2	2.5-4.5	24"	13"	8-9-9-7	7	 Existing Fill 	Medium	dense, brown, F/C S	SAND, some F. Grav	el, some (-) Silt, moist		
5	S_3A	5-6 5'	18"	6"	3_3_2		6 5'+	Loose, brown, F/C SAND, some (+) F/C Gravel, some Silt, moist					
	6 3B	6 5 7'	6"	6"	J-J-2		0.51	Light br	own SILT trace () E	Sand wet			
	S-3D	7.0'	24"	16"	6679	>	_	Light bi	donco light brown	Saliu, wet	ad wat		
	3-4	7-9	24	10	0-0-7-0)					iu, wei		
10'							-						
10	S F	10 10	24"	16"	0000	>	_		ight brown SILT tro	n SILT trace () E Sand wat			
	3-0	10-12	24	10	2-3-3-3)	_	Loose,	igni brown, Silli, tra	ce (-) F. Sanu, wet			
	86	10 14	24"	20"	2244	1	Loose, light brown, SILT, trace (-) F. Sand, wet						
	5-0	12-14	24	20	2-3-4-4	ł	_	Loose,	igni brown, SILT, tra	ce (-) F. Sand, wet			
451							_						
15	0.7	45 471	0.4"	40"	4 4 4 6	`	Notural Silt						
	5-7	15-17	24	18"	1-4-4-6)		Loose,	ight brown, SILT, tra	ce (-) F. Sand, slight	overall plasticity, wet		
							_						
							_						
							_						
20'			0.41				_						
	S-8	20-22	24"	16"	3-5-5-5)	_	Loose t	o medium dense, ligh	it brown, SILT, trace	(-) F. Sand, wet		
							_						
							_						
							_						
25'													
	S-9A	25-25.5'	6"	6"	3		25.5'±	Gray-lig	nt brown-rust, SILT,	trace F. Sand, wet	<u> </u>		
	S-9B	25.5-27'	18"	6"	4-4-5			Loose,	gray-brown, F/C SAN	ID, little Silt, trace F.	Gravel, wet		
						3	2011						
						4,5	30±						
		ad t =		notely of	El forthel			auak	Standard Penetration Resistance	Density	Abbreviations		
1)	Auger	ed to a	pproxir	nately u	0.5± teet beid	ow ground	surface (bgs) thr	ougn	(Disus/Feet)		E = Fina		
	Chistin	y pave	mont.						(DIUWS/FUUL)		r – rine M – Modium		
2)	Groun	uwater	encou	ntered a	al o.o± teet t	ogs while s	sampling.		0.4	Venulaces			
3)	Drilling	g resista	ance in	bac At	u at approxir	nately 281	reet bgs.	fort of	0 -4	very LOOSe	E/M = Eine te Medium		
4)	Auger	a io 31	u± Teet	bgs. At have ל	lempted to s	sample bu	approximately 2	± reet of	1 10				
5)	Boring	termin	ated a	t 30± fe	et bgs.	29013.			4 - 10	LUUSE	Proportions Used		
									10 - 30	Med. Dense			
										_	Trace (T) = 0 - 10%		
									30 - 50	Dense	Little (Li) = 10 - 20%		
											Some (So) = 20 - 35%		
									50+	Very Dense	AND = 35-50%		

					NC	ORTHE	EAST GEO	DTEC	HNICAL, INC	2.	
	TES	T BO	RING	LOG		Project:	Proposed N Building 1 New En Ayer	asoya Fo Addition gland W r, MA	oods s ay	Test Boring N Paç File N Reviewed	lo.: B-4 ge: 1 of 1 lo.: O493.00 By: Glenn Olson, P.E.
	Bori	ng Co.	[Drilex E	nvironmental,	Inc.			Date/Weather:	8-30-2022 / C	lear, 70s to 90s °F
	For	eman:		С	hris Hogan		North	east Ge	otechnical Observer:	Christia	in Rice, P.E.
Borin	ıg Equij	oment:	Mobile	e B-57 ⁻	Truck-Mounted	d Drill Rig	-	Т	est Boring Location:	See Subsurface Ex	ploration Location Plan
			3¼-i	nch I.D.	Hollow-Stem	Augers	-	Groun	d Surface Elevation:	22	5± feet
			2" O.D). Split S	Spoon, 140 lb.	Auto Han	nmer		Depth to Water:	ç	± feet
			Sam	ple Dat	a		Strata Change		S	ample Description	
	No.	Depth	Pen.	Rec.	Blows per 6 i	n. Rem.					
	S-1A	0-0.6'	7"	7"	8		Topsoil Fill, 0.6'±	Dark br	own, SILT and ROO	rS, little F. Sand, mo	ist
	S-1B	0.6-2'	17"	15"	10-10-10			Medium	i dense, tan, F/M SAI	ND and SILT, trace F	. Gravel, moist
	S-2A	2-3'	12"	8"	11-11			Tan, F/I	M SAND, little Silt, litt	le F. Gravel, moist	
	S-2B	3-4'	12"	6"	17-24		Eviating Fill	Gray-br	own, F/C SAND and	F/C GRAVEL, little S	silt, moist
5'	0.0	5 7	0.4"	4 7 11		_		Damaa			
	5-3	D-1	24	17	15-16-14-10	,		Dense,	gray-brown, F/C GR/	AVEL and F/C SANL	, illie (-) Sill, moist
	S-4	7-9'	24"	10"	23-11-11-1	1	9'±	Medium moist	ı dense, gray-brown,	F/C SAND and F/C (GRAVEL, little (-) Silt,
10'						1					
	S-5	10-12'	24"	18"	3-3-4-7			Loose,	light brown, SILT, tra	ce (-) F. Sand, wet	
15'	S-6	15-17'	24"	12"	4-5-6-6			Medium	ı dense, light brown-t	an, SILT, trace (-) F.	Sand, wet
							Natural Silt				
20'											
20	S-7	20-22'	24"	16"	3-4-3-5			Loose,	ight brown-tan, SILT	, trace (-) F. Sand, w	et
051											
25	5-8	25-27'	24"	13"	3_4_3_5			0069	light brown-ten SILT	trace (-) E. Sand w	et
	0-0	20-21	27	10	0-+-0-0			20030,	ight brown-tan, OILT	,	
I							28'±				
						2	Nat Silty Sand				
	S-9	30-32'	24"	10"	7-9-15-13	3	& Gravel, 32'±	Medium	<u>dense, g</u> ray-brown.	F/C SAND and F/C	GRAVEL, little Silt, wet
Notes 1)	: Groun	dwater	encou	ntered a	at 9± feet belo	w ground	surface (bgs) wl	nile	Standard Penetration Resistance	Density	Abbreviations
	drilling								(Blows/Foot)		F = Fine
2)	Drilling	g resista	ance in	creased	d at approxima	ately 28± f	eet bgs.				M = Medium
3)	Boring	termin	ated at	t 32± fe	et bgs.				0 -4	Very Loose	C = Coarse
											F/M = Fine to Medium
									4 - 10	Loose	F/C = Fine to Coarse
									10 - 30	Med. Dense	Proportions Used
									30 - 50	Dense	Little (Li) = $10 - 10\%$
									50+	Very Dense	Some (So) = 20 - 35% AND = 35-50%

					N	IORT	HE	EAST GEO	DTEC	HNICAL, INC	.		
	TES	т во	RING	LOG		Projec	ct:	Proposed N Building 1 New En	asoya Fo Addition Igland W	oods s ay	Test Boring N Pag File N Reviewed	No.: B-5 ge: 1 of 1 No.: O493.00 By: Glenn Olson P.E.	
	Bori	na Co		Driley F	nvironment	al Inc		Aye	I, IVIA	Date/Weather	8-29-2022 / C	Lear 70s to 80s °F	
	Eor	reman:			hrie Hogan	ai, mo.		- North	east Ce	bate/Weather:	Christic	an Rice, D.E.	
Borin	a Fauir	oment.	Mobil	• B-57	Truck-Moun	ted Drill	Ria	-	ieasi Ge	est Boring Location:	See Subsurface Ex	valoration Location Plan	
Donn	ց Էզսի	Jinent.	3%-i	inch I D	Hollow-Ste		rs	-	Groun	d Surface Elevation:	22	24+ feet	
			2" O.E). Split S	Spoon, 140	lb. Auto	Han	nmer	0.00	Depth to Water:	8	B± feet	
			San	Dat פומו	a								
	No.	Depth	Pen.	Rec.	Blows per	6 in. R	em.	Strata Change		5	Sample Description		
							1	Pavement, 0.3'±	3± inch	es BITUMINOUS CO	NCRETE		
	S-1	0.5-2.5	24"	17"	3-7-9-6	3		Existing Fill	M. dense	, gray-brown, F/C SAND	D, some Silt, little F/C Gravel, trace Wood, moist		
	S-2A	2.5-3'	6"	6"	13			3'±	Gray-br	own, F/C SAND, som	ne Silt, some F/C Gra	avel, moist	
5'	S-2B	3-4.5'	18"	12"	38-31-3	30			Very de	nse, gray-tan, F/C S/	AND and F/C GRAVI	EL, little Silt, moist	
5	S-3	5-7'	24"	16"	9-7-15-1	14			Medium moist	i dense, gray-brown,	F/C SAND and F/C	GRAVEL, little (+) Silt,	
	S-4	7-9'	24"	15"	14-10-8-	.11			Medium	dense grav-brown	n, F/C SAND and F/C GRAVEL, little (+) Silt,		
	• ·			10	11100		2		wet	,		••••••••••••••••••••••••••••••••••••••	
10'							_						
	S-5	10-12'	24	3"	7-8-7-	7		1					
								Natural Silty Medium dense, gray-brown, F/C SAND and F/C G				GRAVEL, some Slit, wet	
								Gravel					
								Gravel					
15'													
	S-6	15-17'	24"	6"	4-12-8-	·8			Modium	donco grav brown		C SAND little Silt wat	
									Medium	r dense, gray-brown,			
							3						
20'													
	S-7	20-22'	24"	10"	13-20-34	-36			Very de	nse, gray-brown, F/C	SAND and F/C GR	AVEL, some Silt, wet	
							4	22'±					
										Botto	m of boring at 22± fe	et	
25'													
								1					
Notes			1	I	1			I		Standard Penetration			
1)	Audere	ed to a	pproxir	natelv 0	.5± feet bel	ow arou	nd s	urface (bos) thr	ouah	Resistance	Density	Abbreviations	
	existin	g pave	ment.			5.00			- 3	(Blows/Foot)		F = Fine	
2)	Groun	dwater	encou	ntered a	at 8± feet bo	s while	sam	pling.		· · /		M = Medium	
3)	Drilling	resist	ance ir	crease	d at approxi	, mately 1	8± f	eet bgs.		0 -4	Very Loose	C = Coarse	
4)	Boring	termin	ated a	t 22± fe	et bgs.	., .		5			-	F/M = Fine to Medium	
,	5				2					4 - 10	Loose	F/C = Fine to Coarse	
										10 - 30	Med. Dense	Proportions Used	
											_	Trace (T) = 0 - 10%	
										30 - 50	Dense	Little (Li) = 10 - 20%	
										50	Maria	Some (So) = 20 - 35%	
										50+	Very Dense	AND = 35-50%	

					Ν	ORTHE	EAST GEO	DTEC	HNICAL, INC	2.			
	TES	T BOI	RING	LOG		Project:	Proposed N Building 1 New En Aye	asoya Fo Addition gland Wa r, MA	oods s ay	Test Boring N Paç File N Reviewed	lo.: B-6 ge: 1 of 1 lo.: O493.00 By: Glenn Olson, P.E.		
	Bori	ng Co.		Drilex E	nvironmenta	ıl, Inc.	-		Date/Weather:	8-31-2022 / 0	Clear 60s to 80s °F		
	For	reman:		C	hris Hogan		- North	east Geo	otechnical Observer:	Christia	n Rice, P.E.		
Borin	g Equij	pment:	Mobil	e B-57 ⁻	Truck-Mount	ed Drill Rig	-	Т	est Boring Location:	See Subsurface Ex	ploration Location Plan		
			3¼-i	inch I.D.	. Hollow-Ste	m Augers	-	Groun	d Surface Elevation:	22	4± feet		
			2" O.E	0. Split S	Spoon, 140 I	b. Auto Har	nmer		Depth to Water:	6.	5± feet		
		1	San	ple Dat	a		Strata Change		S	ample Description			
	No.	Depth	Pen.	Rec.	Blows per	6 in. Rem.	5						
	S-1A	0-0.5'	6"	6"	6		Topsoil Fill, 0.5'±	Gray-bro	own, SILT and ROOTS	S, some F/M Sand, tra	ce F. Gravel		
	S-1B	0.5-1.5	12"	12"	16-16		Existing Fill	Gray-br	own, F/C SAND, son	ne Silt, little F/C Grav	el, moist		
	9-10	1.5-2	24"	12"	9	,	21	Medium	dense tan E/M SAI	ND some Silt trace	() E Gravel moist		
5'	0-2	2-7	27	12	1-1-0-1		Natural Silty	Wealan					
Ŭ	S-3	5-7'	24"	16"	6-8-9-1	3	Sand	Medium	dense. grav-tan-rus	t. F/M SAND and SIL	T. moist to wet		
		-				1	7'±		, 5 ,	,	,		
	S-4	7-9'	24"	14"	20-13-12-	-16		Modium	donco, grav brown	E/C SAND and E/C	CRAVEL come Silt wet		
								Medium	rdense, gray-brown,				
10'													
	S-5	10-12'	24"	4"	5-10-7-	7	-	Medium	dense, gray-brown,	F/C SAND and F/C	GRAVEL, some (-) Silt,		
							wet						
							Natural Silty						
451							Sand and	Sand and Gravel					
15	56	15 17	24"	0"	5 10 22	16	Gravel	Donco	arov brown E/C SAN	ID and E/C CRAVEL	little Silt wet		
	3-0	10-17	24	3	5-10-25-	10	Dense, gray-brown, F/C SAND and F/C GRAVEL, little Slit, wet						
20'													
	S-7	20-22'	24"	8"	12-13-13-	·17		Medium	dense, gray-brown,	F/C SAND and F/C	GRAVEL, little (+) Silt,		
						2	22'±	wet					
							-		Botto	m of boring at 22± fe	et		
							-						
25'							-						
							-						
Notes									Standard Penetration	Density	Abbreviations		
1)	Groun	dwater	encou	ntered a	at 6.5± feet b	oelow groun	d surface (bgs)	while	Resistance	Density			
	sampli	ing.							(Blows/Foot)		F = Fine		
2)	Boring	termin	ated a	t 22± fe	et bgs.				0.4	Mamelaa	M = Medium		
									U -4	very Loose	C = Coarse		
									<i>A</i> ₋ 10		F/W = Fine to Wealum		
									4-10	LOOSE			
									10 - 30	Med. Dense	Proportions Used		
											Trace (T) = 0 - 10%		
									30 - 50	Dense	Little (Li) = 10 - 20%		
											Some (So) = 20 - 35%		
									50+	Very Dense	AND = 35-50%		

					Ν	ORTH	EAST GEO	DTEC	HNICAL, ING	Э.	
	TES	T BO	RING	LOG		Project:	Proposed N Building 1 New En Aye	asoya Fo Addition gland W r, MA	oods s ay	Test Boring N Pag File N Reviewed	lo.: <u>B-7</u> ge: <u>1 of 1</u> lo.: <u>O493.00</u> By: Glenn Olson, P.E.
	Bori	ng Co.	l	Drilex E	nvironmenta	al, Inc.			Date/Weather:	8-30-2022 / C	lear, 70s to 90s °F
	For	eman:		С	hris Hogan		 North	east Ge	otechnical Observer:	Christia	n Rice, P.E.
Borin	g Equij	pment:	Mobil	e B-57 ⁻	Truck-Mount	ted Drill Rig	_	Т	est Boring Location:	See Subsurface Ex	ploration Location Plan
			3¼-i	nch I.D.	. Hollow-Ste	m Augers	_	Groun	d Surface Elevation:	22	4± feet
			2" O.C	0. Split S	Spoon, 140 I	b. Auto Har	nmer	-	Depth to Water:	6	± feet
	-		Sam	ple Dat	a		Strata Change		S	Sample Description	
	No.	Depth	Pen.	Rec.	Blows per	6 in. Rem.					
	S-1A	0-0.3'	4"	4"	4		Topsoil Fill, 0.3'±	Dark br	own, SILT and ROO	rS, little F/M Sand, m	noist
	S-1B	0.3-2'	18"	11"	5-5-11	_	Evistica Ell	Loose to	med. dense, light brown, F	/C SAND and F/C GRAVE	L, little (-) Silt, moist
	S-2	2-4	24"	16"	10-8-7-	6		Medium	i dense, tan, F/M SAI	ND, some (+) Silt, tra	ce F. Gravel, moist
E.											
Э	63	5 7'	24"	10"	1655	5 1	σ±	Med de	nse light brown E/C		N/EL little Silt wet
	5-5	5-7	24	10	4-0-0-0	, ,	_	ineu. ue	inse, light brown, r/C		
	S-4	7-9'	24"	17"	7-6-10-	7	_	Med de	ense grav-brown F/(C SAND some Silt li	ttle E/C Gravel wet
	0 1	10	21		1010	,	_	Wou. ut	shoo, gruy brown, r /c		
10'							-				
	S-5	10-12'	24"	18"	11-13-15	-12					
	_	-		_				Medium	i dense, gray-brown,	F/C SAND and F/C	GRAVEL, some Silt, wet
							Natural Silty				
							- Sand and Gravel				
15'							Glavel				
	S-6	15-17'	24"	5"	3-8-14-2	26		Medium	dense, gray-brown,	F/C GRAVEL and F/	C SAND, little (-) Silt,
								wet			
							_				
20'											
	S-7	20-22'	24"	11"	5-9-14-1	4	_	Medium	i dense, gray-brown,	F/C SAND and F/C	GRAVEL, some (-) Silt,
						2	22'±	wet			
							_		Botto	m of boring at 22± fe	et
							_				
25'							-				
							_				
							_				
							-				
							-				
Notes		1		I			1	I	Standard Penetration		
1)	Groun	dwater	encou	ntered a	at 6± feet be	low around	surface (bos) w	hile	Resistance	Density	Abbreviations
.,	sampli	ing.	2.1000						(Blows/Foot)		F = Fine
2)	Borina	- termin	lated a	t 22± fe	et bas.				· · /		M = Medium
_,				9	3				0 -4	Very Loose	C = Coarse
											F/M = Fine to Medium
									4 - 10	Loose	F/C = Fine to Coarse
											Proportions Lload
									10 - 30	Med. Dense	
											Trace (T) = 0 - 10%
									30 - 50	Dense	Little (Li) = 10 - 20%
											Some (So) = 20 - 35%
									50+	Very Dense	AND = 35-50%

					N	IORTH	EAST GEO	DTEC	HNICAL, INC).	
	TES	T BO	RING	LOG		Project:	Proposed N Building 1 New En Aye	asoya Fo Addition Igland W r, MA	oods s ay	Test Boring N Pac File N Reviewed	No.: B-8 ge: 1 of 1 No.: O493.00 By: Glenn Olson, P.E.
	Bori	ng Co.		Drilex E	nvironmenta	al, Inc.			Date/Weather:	8-30-22 to 8-31-2	2 / Clear, 70s to 90s °F
	For	reman:		C	hris Hogan		North	east Ge	otechnical Observer:	Christia	an Rice, P.E.
Borin	g Equij	pment:	Mobil	e B-57 ⁻	Truck-Moun	ted Drill Rig	_	Т	est Boring Location:	See Subsurface Ex	xploration Location Plan
			3¼-i	nch I.D	. Hollow-Ste	m Augers	_	Groun	d Surface Elevation:	22	24± feet
			2" O.E	0. Split S	Spoon, 140	lb. Auto Hai	mmer		Depth to Water:	8.	5± feet
			San	ple Dat	a 		Strata Change		S	ample Description	
	No.	Depth	Pen.	Rec.	Blows per	6 in. Rem.		Durautura			E. Oraval
	S-1A	0-0.5	6" 10"	6" 6"	5	2	Topsoil Fill, 0.5'±	Brown,	SILT and ROUTS, so	ome F/M Sand, trace	F. Gravel
	S-1B	0.5-2	18	16"	10-17-3	27	Existing Fill, 2±	Wery de	ndense, tan, SILT, so	ome F. Sand, trace (-) ROOIS, MOISI
	3-2	2-4	24	10	20-29-25	-21	-	very de	rise, gray-tail, F/C S/		
5'							_				
Ŭ	S-3	5-7'	24"	10"	6-14-17-	15	-	Dense	grav-brown, F/C SAN	ND and F/C GRAVEL	some (-) Silt, moist
		• ·			• • • • •		-	,	g.a., 2.000, ., e e.a		., come () on, more
	S-4	7-9'	24"	11"	30-25-41	-29	_	Very de	nse, gray-brown, F/C	GRAVEL and F/C S	SAND, little Silt, moist to
						1,2	_	wet			
10'											
	S-5	10-12'	24"	8"	6-10-24-	25	Natural Silty Dense, gray-brown, F/C GRAVEL and F/C SAND, little Silt,), little Silt, wet
							Sand and				
							Gravel				
15'											
	S-6	15-17'	24"	7"	9-12-12-	15	Medium dense, gray-brown, F/C SAND and F/C GRAVEL, little Si				
							_	- , ,			
							_				
							_				
20'	0.7	00.00	0.4	-"	47.44.40	40	_				
	S-7	20-22	24"	5"	17-11-13	-16	22'+	Medium	dense, gray-brown,	F/C GRAVEL and F/	C SAND, little Silt, wet
						3	22 1		Botto	m of boring at 22+ fe	et
							-		Bollo		
25'							_				
20											
							-				
							_				
							1				
Notes									Standard Penetration	Density	Abbreviations
1)	Groun	dwater	encou	ntered a	at 8.5± feet	below grour	nd surface (bgs)	while	Resistance	Denoity	
	sampli	ing.							(Blows/Foot)		F = Fine
2)	Auger	grindin	ig on p	robable	cobbles an	d/or boulde	r(s) observed fro	m	<u> </u>	., .	M = Medium
	approx	kimatel	y 8± to	9.5± te	et bgs.				0 -4	Very Loose	C = Coarse
3)	Boring	l termin	ated a	t 22± fe	et bgs.				4 40	1	F/M = Fine to Medium
									4 - 10	Loose	F/C = Fine to Coarse
									10 - 30	Med. Dense	Proportions Used
											Trace (T) = 0 - 10%
									30 - 50	Dense	Little (Li) = 10 - 20%
									50		Some (So) = 20 - 35%
									50+	Very Dense	AND = 35-50%

					Ν	OR	THE	EAST GEO	DTEC	HNICAL, IN	С.	
	TES	T BO	RING	LOG		Pro	ject:	Proposed N Building 1 New En Ayer	asoya F Addition gland W r, MA	oods s ay	Test Boring N Paç File N Reviewed	lo.: B-9 ge: 1 of 1 lo.: O493.00 By: Glenn Olson, P.E.
	Bori	ng Co.		Drilex E	nvironment	al, Inc		-		Date/Weather:	8-31-2022 / 0	Clear 60s to 80s °F
	Foi	reman:		С	hris Hogan			 North	east Ge	otechnical Observer:	Christia	in Rice, P.E.
Borin	g Equi	pment:	Mobil	e B-57 ⁻	Fruck-Moun	ted Dr	rill Rig	-	Т	est Boring Location:	See Subsurface Ex	ploration Location Plan
			3¼-i	nch I.D.	Hollow-Ste	em Au	gers	_	Groun	d Surface Elevation:	22	4± feet
			2" O.E	0. Split S	Spoon, 140	lb. Au	to Har	nmer		Depth to Water:	9.	5± feet
			San	ple Dat	a			Strata Change		s	ample Description	
	No.	Depth	Pen.	Rec.	Blows per	6 in.	Rem.					
	S-1A	0-0.5'	6"	6"	6			Topsoil Fill, 0.5'±	Brown,	SILT and ROOTS, lit	tle F. Sand, moist	
	S-1B	2-4'	24"	9"	10-20-2	22		-	Med. de	nse, tan, F/C SAND an	d SILT, some F. Grave	l, trace wood, moist
	S-2	2-4'	24"	9"	17-13-15	-16		-	Medium	i dense, gray-brown,	F/C SAND and F/C	GRAVEL, some Silt,
								-	moist			
5'	63	5 7'	24"	2"	224	5		Existing Fill		arav-brown-black F/		unic Silt little E. Gravel
	3-3	5-7	24	5	2-2-4-	5		-	trace ro	ots, moist	C OAND, Some Orga	
	S-4	7-9'	24"	2"	8-5-5-	5		-	Loose t	o medium dense, Or	ganic SILT, some F/0	C Sand, moist, piece of
						-			coarse	Gravel blocking sam	pler tip	
10'							1	9.5'±				
	S-5	10-12'	24"	12"	8-12-10-	·10		Medium dense grav-brown F/C GRAVEL and F/C SAND littl			C SAND little Silt wot	
									wealun	i delise, glay-biowii,		C SAND, IIIIe SIII, wei
15'								Natural Silty				
	S-6	15-17'	24"	11"	9-12-22-	·18		Sand and	Dense,	gray, F/C SAND and	F/C GRAVEL, little	Silt, wet
								Gravel				
								-				
								-				
20'								-				
	S-7	20-22'	24"	6"	15-23-25	-27			Dense,	gray-brown, F/C GR	AVEL and F/C SANE), little Silt, wet
							2	22'±			(1) (00) (
								-		Botto	m of boring at 22± fe	et
0.51								-				
25								-				
								-				
								-				
								1				
								1				
Notes	:	1	1	1	I			1	1	Standard Penetration		A
1)	Groun	dwater	encou	intered a	at 9.5± feet	below	grour	nd surface (bgs)	while	Resistance	Density	Abbreviations
	drilling	J.					-			(Blows/Foot)		F = Fine
2)	Boring	, termir	nated a	t 22± fe	et bgs.							M = Medium
Í	C				-					0 -4	Very Loose	C = Coarse
												F/M = Fine to Medium
										4 - 10	Loose	F/C = Fine to Coarse
										<i>,</i>	· · -	Proportions Used
										10 - 30	Med. Dense	T (T) 0 (00)
										20 50	Derse	Irace $(1) = 0 - 10\%$
										30 - 50	Dense	LILLIE (LI) = $10 - 20\%$
										50+	Very Donso	$\Delta ND = 35.50\%$
										- UT	very Delise	AND - 33-30%

REDEVELOPMENT CHECKLIST

Department of Environmental Protection's Stormwater Management Handbook Volume 2 Chapter 3 Checklist for Redevelopment Projects.

DEP Checklist is in regular text *Current Response is in Italics and in red*

Existing Conditions

• On-site: For all redevelopment projects, proponents should document existing conditions, including a description of extent of impervious surfaces, soil types, existing land uses with higher potential pollutant loads, and current onsite stormwater management practices.

Existing site conditions is fully described in the Existing Conditions Plan filed with the NOI.

• Watershed: Proponents should determine whether the project is located in a watershed or subwatershed, where flooding, low streamflow or poor water quality is an issue.

As described in the Stormwater Management Summary (SMS) a portion of the site is located with the floodplain. However this area is not in the area of the redevelopment.

As decribed in the SMS the site ultimately drains to Bennets Brook and Spectacle Pond approximately 3,500 ft from the site. These waterways are impaired by Ecoli and invasive plant species.

The Project

Is the project a redevelopment project? (yes)

- Maintenance and improvement of existing roadways (*no*)
- Development of rehabilitation, expansion or phased project on redeveloped site, or(yes)
- Remedial stormwater project (*no*)

For non-roadway projects, is any portion of the project outside the definition of redevelopment?

- Development of previously undeveloped area (*no*)
- Increase in impervious surface (yes)

If a component of the project is not a redevelopment project, the proponent shall use the checklist set forth below to document that at a minimum the proposed stormwater management system fully meets each Standard for that component. The proponent shall also document that the proposed stormwater management system meets the requirements of Standard 7 for the remainder of the project.

The Stormwater Management Standards

The redevelopment checklist reviews compliance with each of the Stormwater Management Standards in order.

Standard 1: (Untreated discharges)

No new stormwater conveyances (e.g., outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth. Same rule applies for new developments and redevelopments.

Full compliance with Standard 1 is required for new outfalls.
What BMPs are proposed to ensure that all new discharges associated with the discharge are adequately treated?

There will be no new discharge points.

• What BMPs are proposed to ensure that no new discharges cause erosion in wetlands or waters of the Commonwealth?

There will be no new discharge points.

• Will the proposed discharge comply with all applicable requirements of the Massachusetts Clean Waters Act and the regulations promulgated thereunder at 314 CMR 3.00, 314 CMR 4.00 and 314 CMR 5.00?

There will be no new discharge points.

Existing outfalls shall be brought into compliance with Standard 1 to the maximum extent practicable.

• Are there any existing discharges associated with the redevelopment project for which new treatment could be provided?

The existing stormwater sytem consist primarily of catch basins and recharge chambers. A portion of the site drains directly to the wetlands via catch basins and manholes. Since this project entails just repaving with no changes to the impervious area no additional improvements are proposed other than an O and M plan.

If so, the proponent shall specify the stormwater BMP retrofit measures that have been considered to ensure that the discharges are adequately treated and indicate the reasons for adopting or rejecting those measures. (See Section entitled "Retrofit of Existing BMPs".)

As described in the SMS all of the watersheds within the site will be improved. All redeveloped areas will meet new development standards, the areas that will not be redeveloped will be improved by reducing impervious surfaces and adhering to a Stormwater Management Operation and Maintenance Plan and Long Term Polution Prevention Plan.

• What BMPs have been considered to prevent erosion from existing stormwater discharges?

As described in the SMS there are no outfalls dedicated to this site. Subsurface Retention systems will be used to reduce runoff rates and therefore reduce runoff rates at the existing outfall.

Standard 2: (Peak rate control and flood prevention)

Stormwater management systems must be designed so that post-development peak discharge rates do not exceed pre-development peak discharge rates. This Standard may be waived for land subject to coastal storm flowage.

Full compliance for any component that is not a redevelopment

Compliance to the Maximum Extent Practicable:

• Does the redevelopment design meet Standard 2, comparing post-development to pre-development conditions?

Yes.

• If not, the applicant shall document an analysis of alternative approaches for meeting the Standard. (See Menu of Strategies to Reduce Runoff and Peak Flows and/or Increase Recharge Menu included at the end of this chapter.)

N/A

Improvement of existing conditions:

• Does the project reduce the volume and/or rate of runoff to less than current estimated conditions? Has the applicant considered all the alternatives for reducing the volume and/or rate of runoff from the site? (See Menu.)

Yes

• Is the project located within a watershed subject to damage by flooding during the 2-year or 10-year 24-hour storm event?

No.

- If so, does the project design provide for attenuation of the 2-year and 10-year 24-hour storm event to less than current estimated conditions? Have measures been implemented to reduce the volume of runoff from the site resulting from the 2 year or 10 year 24 hour storm event? (See Menu.) *See Runoff Summary*
- Is the project located adjacent to a water body or watercourse subject to adverse impacts from flooding during the 100-year 24-hour storm event? If so, are portions of the site available to increase flood storage adjacent to existing Bordering Land Subject to Flooding (BLSF)?
- Have measures been implemented to attenuate peak rates of discharge during the 100-year 24-hour storm event to less than the peak rates under current estimated conditions? Have measures been implemented to reduce the volume of runoff from the site resulting from the 100-year 24-hour storm event? (See Menu.)

Yes

Standard 3: (Recharge to Ground water)

Loss of annual recharge to ground water shall be eliminated or minimized through the use of infiltration measures, including environmentally sensitive site design, low impact development techniques, best management practices, and good operation and maintenance. At a minimum, the annual recharge from the post-development site shall approximate the annual recharge from the pre-development conditions based on soil type. This Standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusettss Stormwater Handbook. Full compliance for any component that is not a redevelopment

Compliance to the Maximum Extent Practicable:

- Does the redevelopment design meet Standard 3, comparing post-development to pre-development conditions?
 Yes.
- If not, the applicant shall document an analysis of alternative approaches for meeting the Standard?
- What soil types are present on the site? Is the site is comprised solely of C and D soils and bedrock at the land surface?

See Stormwater Report.

• Does the project include sites where recharge is proposed at or adjacent to an area classified as contaminated, sites where contamination has been capped in place, sites that have an Activity and Use Limitation (AUL) that precludes inducing runoff to the groundwater, pursuant to MGL Chapter 21E and the Massachusetts Contingency Plan 310 CMR 40.0000; sites that are the location of a solid waste landfill as defined in 310 CMR 19.000; or sites where groundwater from the recharge location flows directly toward a solid waste landfill or 21E site?¹

No.

- Is the stormwater runoff from a land use with a higher potential pollutant load? *No.*
- Is the discharge to the ground located within the Zone II or Interim Wellhead Protection Area of a public water supply?
 - Yes.
- Does the site have an infiltration rate greater than 2.4 inches per hour? *No*

Improvements to Existing Conditions:

- Does the project increase the required recharge volume over existing (developed) conditions? If so, can the project be redesigned to reduce the required recharge volume by decreasing impervious surfaces (make building higher, put parking under the building, narrower roads, sidewalks on only one side of street, etc.) or using low impact development techniques such as porous pavement? *Yes, Parking Waiver and pavement removal.*
- Is the project located within a basin or sub-basin that has been categorized as under high or medium stress by the Massachusetts Water Resources Commission, or where there is other evidence that there are rivers and streams experiencing low flow problems? If so, have measures been considered to replace the natural recharge lost as a result of the prior development? (See Menu.) *No*
- Has the applicant evaluated measures for reducing site runoff? (See Menu.) *Yes*

Standard 4: (80% TSS Removal)

Stormwater management systems must be designed to remove 80% of the average annual post-construction load of Total Suspended Solids (TSS). This standard is met when:

a. Suitable practices for source control and pollution prevention are identified in a long-term pollution prevention plan and thereafter are implemented and maintained;

b. Stormwater BMPs are sized to capture the required water quality volume determined in accordance with the Massachusetts Stormwater Handbook; and

c. Pretreatment is provided in accordance with the Massachusetts Stormwater Handbook.

Full compliance for any component that is not a redevelopment

Full compliance with the long-term pollution plan requirement for new developments and redevelopments.

- Has the proponent developed a long-term pollution plan that fully meets the requirements of Standard 4? *Yes.*
- Does the pollution prevention plan include the following source control measures?
 - Street sweeping *Yes*
 - o Proper management of snow, salt, sand and other deicing chemicals Yes
 - Proper management of fertilizers, herbicides and pesticides Yes
 - Stabilization of existing eroding surfaces N/A

Compliance to the Maximum Extent Practicable for the other requirements:

- Does the redevelopment design provide for treatment of all runoff from existing (as well as new) impervious areas to achieve 80% TSS removal? If 80% TSS removal is not achieved, has the stormwater management system been designed to remove TSS to the maximum extent practicable? *Yes.*
- Have the proposed stormwater BMPs been properly sized to capture the prescribed runoff volume? *Yes*
 - One inch rule applies for discharge : Yes
 - within a Zone II or Interim Wellhead Protection Area Yes
 - near or to another critical area
 - from a land use with a higher potential pollutant load
 - to the ground where the infiltration rate is greater than 2.4 inches per hour
- Has adequate pretreatment been proposed? *Yes*
 - 44% TSS Removal Pretreatment Requirement applies if:
 - Stormwater runoff is from a land use with a higher potential pollutant load
 - Stormwater is discharged
 - To the ground within the Zone II or Interim Wellhead Protection Area of a Public Water Supply
 - To the ground with an infiltration rate greater than 2.4 inches per hour
 - Near or to an Outstanding Resource Water, Special Resource Water, Cold-Water Fishery, Shellfish Growing Area, or Bathing Beach

• If the stormwater BMPs do not meet all the requirements set forth above, the applicant shall document an analysis of alternative approaches for meeting the these requirements. (See Section on Retrofitting Existing BMPs (the "Retrofit Section").

See response above

0

Improvements to Existing Conditions:

- Have measures been provided to achieve at least partial compliance with the TSS removal standard? *Yes.*
- Have any of the best management practices in the Retrofit Section been considered? (No)
- Have any of the following pollution prevention measures been considered?
 - Reduction or elimination of winter sanding, where safe and prudent to do so (Yes)
 - Tighter controls over the application of fertilizers, herbicides, and pesticides (Yes)
 - Landscaping that reduces the need for fertilizer, herbicides and pesticides (Yes)
 - High frequency sweeping of paved surfaces using vacuum sweepers (Yes)
 - Improved catch basin cleaning (Yes)
 - Waterfowl control programs (No)
- Are there any discharges (new or existing) to impaired waters? If so, see TMDL section. *Yes, See above*

Standard 5 (Higher Potential Pollutant Loads (HPPL)

For land uses with higher potential pollutant loads, source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable. If through source control and/or pollution prevention, all land uses with higher potential pollutant loads cannot be completely protected from exposure to rain, snow, snow melt and stormwater runoff, the proponent shall use the specific stormwater BMPs determined by the Department to be suitable for such use as provided in the Massachusetts Stormwater Handbook. Stormwater discharges from land uses with higher potential pollutant loads shall also comply with the requirements of the Massachusetts Clean Waters Act, M.G.L. c. 21, §§ 26-53, and the regulations promulgated thereunder at 314 CMR 3.00, 314 CMR 4.00 and 314 CMR 5.00. Full compliance for any component that is not a redevelopment.

Full compliance with pollution prevention requirements for new developments and redevelopments.

(This Section is not Applicable)

Pollution Prevention

- Has the proponent considered any of the following operational source control measures?
 - Formation of a pollution prevention team,
 - o Good housekeeping practices,
 - o Preventive maintenance procedures,
 - Spill prevention and clean up,
 - Employee training, and
 - Regular inspection of pollutant sources.
- Has the proponent considered implementation of any of the following operational changes to reduce the quantity of pollutants on site?
 - o Process changes,
 - o Raw material changes,
 - o Product changes, or
 - o Recycling.

- Has the proponent considered making capital improvements to protect the land uses with higher potential pollutant loads from exposure to rain, snow, snow melt, and stormwater runoff?
 - Enclosing and/or covering pollutant sources (e.g. placing pollutant sources within a building or other enclosure, placing a roof over storage and working areas, placing tarps under pollutant source)
 - Installing a containment system with an emergency shutoff to contain spills?
 - Physically segregating the pollutant source to prevent run-on of uncontaminated stormwater?

Treatment

- If applicable, compliance with the treatment and pretreatment requirements of Standard 5 only to the Maximum Extent Practicable by directing the stormwater runoff from land uses with higher potential pollutant loads to appropriate stormwater BMPs?
 - Are the BMPs selected capable of removing the pollutants associated with the higher potential pollutant load land ("LUHPPL") use?
 - Is the land use likely to generate stormwater with high concentrations of oil and grease? If so has an oil grit separator, sand filter, filtering bioretention area or equivalent been proposed for pretreatment?

Improvement of Existing Conditions

- If the redevelopment converts a site from a non-LUHPPL use to a LUHPPL use, the applicant shall document how the stormwater BMPs shall be modified or replaced to come into compliance with Standard 5.
- What specific measures have been considered to offset the anticipated impacts of land uses with higher potential pollutant loads?
- If the redevelopment proposal is a brownfield project, the applicant shall demonstrate how the stormwater management measures have been designed to prevent mobilization or remobilization of soil and groundwater contamination. (See Brownfield section)

Other Requirements

• Does the discharge comply with all applicable requirements of the Massachusetts Clean Waters Act, 314 CMR 3.00, 314 CMR 4.00 and 314 CMR 5.00?

Standard 6 (Critical Areas)

Stormwater discharges to a Zone II or Interim Wellhead Protection Area of a public water supply and stormwater discharges near or any other critical area require the use of the specific source control and pollution prevention measures and the specific stormwater best management practices determined by the Department to be suitable for managing discharges to such area, as provided in the Massachusetts Stormwater Handbook. A discharge is near a critical area if there is a strong likelihood of a significant impact occurring to said area, taking into account site-specific factors. Stormwater discharges to Outstanding Resource Waters or Special Resource Waters shall be set back from the receiving water and receive the highest and best practical method of treatment. A "stormwater discharge," as defined in 314 CMR 3.04(2)(a)1. or (b), to an Outstanding Resource Water or Special Resource Water shall comply with 314 CMR 3.00 and 314 CMR 4.00. Stormwater discharges to a Zone I or Zone A are prohibited unless essential to the operation of the public water supply.

Full compliance for component of project that is not a redevelopment Full compliance with pollution prevention requirements for new developments and redevelopments.

See above. The project will improve existing conditions by installing bmp's, minimizing pavement, and instituting an O and M plan.

If applicable, compliance to the Maximum Extent Practicable with the pretreatment and treatment requirements of Standard 6:

- Does the redevelopment project utilize the pretreatment, treatment and infiltration BMPs approved for discharges near or to critical areas?
- If the redevelopment project does not comply with Standard 6, the applicant shall document an analysis of alternative measures for meeting Standard 6. (See Section on Specific Redevelopment Projects.)

See above

Improvements to Existing Conditions:

• Have measures to protect critical areas been considered, including additional pollution prevention measures and structural and non-structural BMPs?

See above

Other Requirements

• Does the discharge comply with the Massachusetts Clean Waters Act, 314 CMR 3.00, 314 CMR 4.00, and 314 CMR 5.00?

See above

Standard 8: (Erosion, Sediment Control)

A plan to control construction-related impacts, including erosion sedimentation and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan), must be developed and implemented.

All redevelopment projects shall fully comply with Standard 8.

• Has the proponent submitted a construction period erosion, sedimentation and pollution prevention plan that meets the requirements of Standard 8? (*Yes*)

Standard 9: (Operation and Maintenance)

A long-term operation and maintenance plan must be developed and implemented to ensure that stormwater management systems function as designed.

All redevelopment projects shall fully comply with Standard 9.

• Has the proponent submitted a long-term Operation and Maintenance plan that meets the requirements of Standard 9? (*Yes*)

Standard 10 (Illicit Discharges)

All illicit discharges to the stormwater management system are prohibited. All redevelopment projects shall fully comply with Standard 10.

- Are there any known or suspected illicit discharges to the stormwater management system at the redevelopment project site? (*No*)
- Has an illicit connection detection program been implemented using visual screening, dye or smoke testing? (*No*)
- Have an Illicit Discharge Compliance Statement and associated site map been submitted verifying that there are no illicit discharges to the stormwater management system at the site? (*Yes*)

Improvements to Existing Conditions:

• Once all illicit discharges are removed, has the proponent implemented any measures to prevent additional illicit discharges? *N/A*