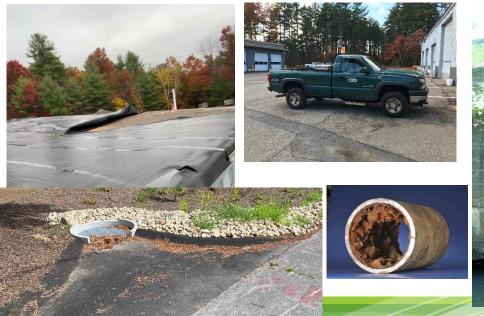
Ayer's Stormwater Asset Management Plan


Department of Public Works
Town of Ayer

February 2022

What is an Asset?

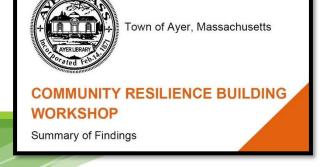
- Something that has value or potential value
- Is intended to serve a particular purpose for the entity
- Requires management in order to maintain level of service

What is Asset Management in One Slide?

Assets Service Criticality Life Cycle Funding

Why Create the Stormwater Asset Management Plan (AMP)?

- Municipal Vulnerability Preparedness (MVP) program:
 - Define climate related hazards
 - Understand how they may be impacted by climate change utilizing the latest science and data



- Identify existing and future climate vulnerabilities and strengths
- Identify opportunities to take action to reduce risk and build resilience
- Implement priority actions identified through the planning process

Why Create the Stormwater AMP?

- Community Resilience Building Workshop
 - Community-driven process with various stakeholders
 - Determine and prioritize action for community vulnerabilities (e.g. flooding, hurricane, power outage, wildfires, air quality, etc.)
 - Top Priority Actions
 - High, Medium, and Low Priority Actions

Developing a Stormwater Asset Management Plan was a Top Priority

Why Create the Stormwater AMP?

- Data driven process to maintain stormwater system
 - Expand upon the current asset inventory records
 - Understand the condition of the existing drainage system
 - Move program from Reactive Proactive
 - Coordinate with water quality programs (MS4, Pond Report, etc.) and MVP
 - Create a risk-based Plan to guide maintenance decisions

Funding for Development of the Stormwater AMP

- Massachusetts Clean Water Trust (MCWT) Asset Management Plan Grant
- 60% Grant, 40% Town
 - Grant \$72,750
 - 2021 ATM Capital \$38,750
 - DPW In-kind services \$9,750

Consultant and Scope

- Tighe and Bond on the DEP Approved Consultant List for Asset Management Program Development
- Scope of efforts (discussed over the next few slides):
 - Desktop Review
 - Field Inspections
 - Drainage Infrastructure
 - Culverts
 - Asset Management Ranking
 - Probability of Failure (PoF)
 - Consequence of Failure (CoF)
 - Final Report Asset Management Plan

Desktop Review

Developed an initial asset inventory, utilizing Ayer DPWs existing stormwater GIS system

Identified missing asset information and potential culvert

locations

This information allowed Tighe& Bond to create

- A map book of all existing and potential asset locations
- Field assessment forms based on missing data needed to determine criticality

Field Inspections

- Drainage infrastructure
 - Focused on areas with old systems, poor drainage areas, poor mapping, and other concerns (e.g. flooding)
 - Assessments were completed by Highway Division and Consultant with Envirosight Zoom Inspection camera
 - size, material, general connectivity, and other aspects of the infrastructure
- Culvert
 - Assessments obtained size, material, condition, upstream/downstream data, structural and hydraulic deficiencies, and other maintenance concerns (e.g. yard waste, beaver dams, trees, and other obstructions)

Ranking of Assets - POF and COF

- Probability of Failure (PoF):
 - Age/useful life
 - Maintenance/failure history
 - Condition from field assessments

lure —	moderate risk	high risk
Probability of failure	low risk	moderate risk
	Consequences of failu	ire

- Consequence of Failure (CoF):
 - Impacts to users and critical locations (e.g. ambulance routes, environmental, detour length, etc.)
 - Financial inefficiency, asset is costing more to repair than it would to replace

Ranking of Assets - Overall Criticality (i.e. Risk) Score

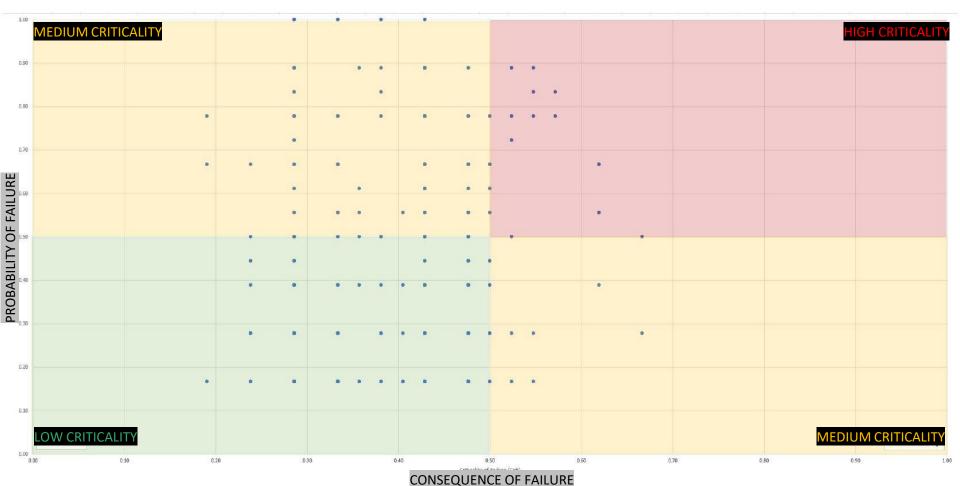


Figure 5-2 Drainage Pipe Risk Matrix

Ranking of Assets - Overall Criticality (i.e. Risk) Score

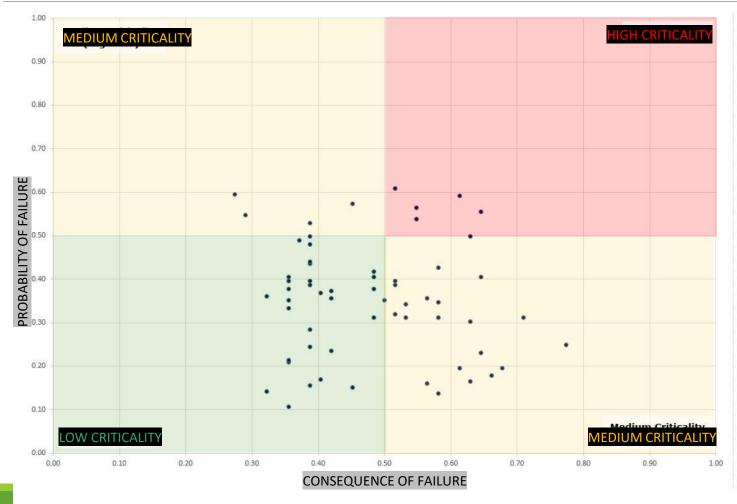


Figure 5-4 Culvert Risk Matrix

Ranking of Assets - Overall Criticality (i.e. Risk) Score

TABLE 5-22

Risk Factor Category Ratings

Risk Category	Value	Action		
High	If CoF > 0.5 and PoF > 0.5	Immediate Attention		
	If CoF \leq 0.5 and PoF \geq 0.5	Aggressive Maintenance		
Medium	Or			
	If CoF \geq 0.5 and PoF \leq 0.5	Aggressive Monitoring		
Low	If CoF < 0.5 and PoF < 0.5	Routine Maintenance		

Completed Plan – A Living Document

- Final AMP includes:
 - A description of the drainage system and culvert inventories and the results
 - The risk-based prioritization process
 - Recommendations for capital improvements, further investigation, maintenance, and funding
 - A Five-Year Culvert Action Plan
 - Plan for ongoing program updates

Stormwater Asset Management Plan Ayer, Massachusetts November 2022

Tighe&Bond

Results – Drainage Structures

- Drainage Manholes/Catch Basins
 - Structure condition shows approximately71% are in good or excellent condition
 - Structure Type:
 - 21% Concrete
 - 60% Block
 - 63% Brick

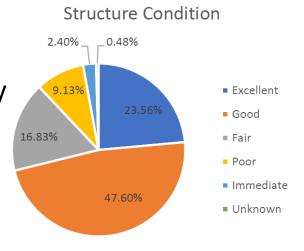


Figure 3-5 Example of a Precast Drain Manhole (Left) and Brick/Block Catch Basin (Right)

Results - Pipes

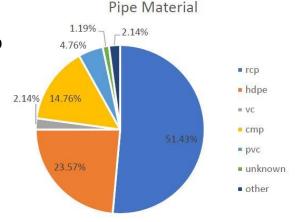
5.0% 2.4% ■ Excellent ■ Good ■ Fair ■ Poor

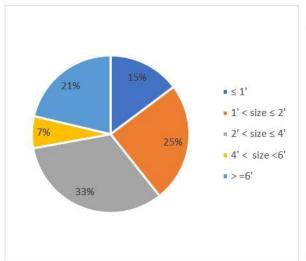
Pipe Condition

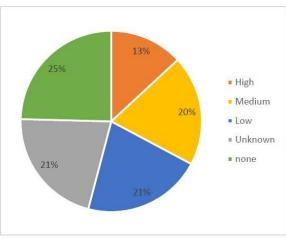
Drainage Pipes

- Pipe condition shows approximately 61% are in good or excellent condition
- 60% of RCP and 92% of HDPE pipes inspected were in good or excellent condition

70% of CMP inspected were in fair or poor condition




Figure 3-7 Example of a RCP in Excellent Condition (Left) and CMP in Poor Condition (Right)


AF: ON

2017/05/11 14:53:34

Results - Culverts

- Culverts
 - Mostly corrugated metal and reinforced concrete
 - Distribution by deterioration severity
 - 33% of culverts demonstrate medium to high deterioration
 - 21% are unknown due to high water or inability to access culvert

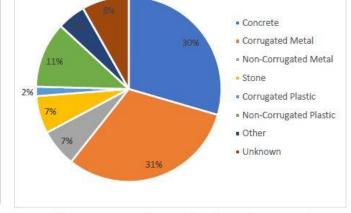


Figure 4-2 Distribution of Culverts by Deterioration Severity

Figure 4-1 Distribution of Culverts by Size

Figure 4-3 Distribution of Culverts by Material

5 – Year Action Plan

		•		Opini	on of Probabl	e Cost	
Asset ID and Address	Summary of Work	Criticality Score	FY24	FY25	FY26	FY27	FY28
Drainage System Improvement Proj	ects1	•			•	•	
P-1096-Willow Road	culvert replacement	High				\$ 120,000	\$ 853,000
P-1539- Willow Road	culvert replacement	High	\$ 130,000	\$ 1,170,000			
P-550- Oak Ridge Drive	culvert replacement	High	\$ 130,000		\$1,138,000		
Potential 11- Spectacle Road	culvert replacement	High		\$ 130,000		\$ 1,241,000	
P-711 - Madigan Lane	culvert replacement	High			\$ 120,000		\$ 764,000
P-New1 - Willow Road	culvert replacement	Medium				\$ 130,000	
Complete Maintenance and Repair ²							•
DS-1367 and DS-159	Catch basin and manhole cleaning and further investigation	High	In-house				
Various	Pipe Replacement	High/Medium	\$ 200,000	\$ 200,000	\$ 200,000	\$ 200,000	\$ 200,000
Various	Pipe Cleaning/CCTV	Medium		\$ 30,000	\$ 30,000	\$ 30,000	\$ 30,000
		Subtotal	\$ 460,000	\$1,530,000	\$1,488,000	\$1,721,000	\$1,847,000
Further Investigation/Study							
Prices liste	ed below assume only	one mobilizati	ion is require	d to CCTV all p	ipes that year	r.	
P-590, P-151, P-972, P-224, P-150, P- 147, P-1223, P-4, P-17, P-970, P- 1226, P-335, P-334, P-1489, P-199	Mobilization, Cleaning and CCTV	High	\$ 30,000				
Programmatic Improvements						•	
Ongoing Maintenance			\$ 25,000	\$ 25,000	\$ 25,000	\$ 25,000	\$ 25,000
Inspection Program			\$ 8,000	\$ 8,000	\$ 8,000	\$ 8,000	\$ 8,000
GIS Data Maintenance			\$ 5,000	\$ 5,000	\$ 5,000	\$ 5,000	\$ 5,000
Annual Updated PoF, Criticality, and Rec	commendations		\$ 10,000	\$ 10,000	\$ 10,000	\$ 5,000	\$ 5,000
		Total	\$ 780,992	\$1,628,000	\$1,558,992	\$1,764,000	\$1,890,000

^{1.} See attached OPCCs (Opinion of Probable Construction Cost) for each project.

^{2.} See Project Summaries in Appendix F for OPCCs (Opinion of Probable Construction Cost) of PLA drainage pipes in need of replacement.

Color Key:	
\$	= CCTV Cost
\$	= Design and Permitting
\$	= Construction Cost

Next Steps

- Begin Implementation of the Stormwater AMP
- Reexamine Stormwater Utility as a funding source
- Continue updating DPWs stormwater GIS with field investigations
- Update AMP routinely

Thank You

DAN VAN SCHALKWYK, P.E.

DIRECTOR OF PUBLIC WORKS