Ayer Commons 40B Housing Development
 Traffic Impact and Access Study
 65 Fitchburg Road
 Ayer, MA
 July 2022

Prepared for:
Neighborhood of Affordable Housing 143 Border Street
East Boston, MA 02128

Prepared by:
-BSC GROUP
803 Summer Street
Boston, MA 02127
(617) 896-4300
Contents
Executive Summary 1
1 Introduction 2
2 Existing Conditions 3
2.1. Study Area 3
2.2. Existing Roadway Conditions 3
2.3. Existing Intersection Conditions 5
2.4. Existing Traffic Conditions 7
2.4.1. Turning Movement Count (TMC) Data 7
2.4.2. Automatic Traffic Recorder (ATR) Data 7
2.5. Motor Vehicle Crash Data 10
3 Future Conditions 11
3.1. No-Build Conditions 11
3.1.1. Background Growth 11
3.1.2. Background Development Projects 11
3.2. Build Conditions 13
3.2.1. Trip Generation 13
3.2.2. Parking Generation 13
3.2.3. Trip Distribution 13
4 Traffic Operations Analysis 17
4.1. Level of Service 17
4.2. Transportation Demand Management Strategies 20
5 Summary and Conclusions 21

List of Figures

Figure 1 Project Location \& Study Area 4
Figure 2 Study Area Lane Configuration \& Pedestrian Facilities 6
Figure 32022 Existing Conditions Peak Hour Traffic Volumes 9
Figure 42029 No-Build Conditions Peak Hour Traffic Volumes 12
Figure 5 Trip Distribution Map 14
Figure 6 Peak Hour Project Generated Traffic Volumes 15
Figure 72029 Build Conditions Peak Hour Traffic Volumes. 16
List of Tables
Table 1 Automatic Traffic Recorder (ATR) Data Summary 7
Table 2 Automatic Traffic Recorder (ATR) Speed Summary 8
Table 3 Motor Vehicle Crash Data Summary 10
Table 4 Background Development Project Trip Generation Summary 11
Table 5 Proposed Project-Generated Trips 13
Table 6 Level of Service Designations 17
Table 7 Traffic Operations Analysis Summary - Weekday Morning Peak Hour 19
Table 8 Traffic Operations Analysis Summary - Weekday Evening Peak Hour 19
Table 9 Transportation Demand Management Strategies 20

Executive Summary

BSC Group (BSC) has prepared this Traffic Impact and Access Study (TIAS) to evaluate the potential traffic impacts associated with the proposed construction of a 40B multifamily housing project, known as Ayer Commons, to be located at 65 Fitchburg Road in Ayer, Massachusetts. The development is proposed to consist of 106 residential units spread across multiple buildings.

This study includes a review of existing traffic and roadway conditions in the vicinity of the Project site and the motor vehicle crash history at study area intersections. This report identifies background traffic growth for study area roadways, estimates additional traffic generated by the Project, and evaluates potential traffic impacts due to Project-generated traffic.

This study shows that:

- The proposed 106 -unit housing development project is expected to generate up to approximately 714 new weekday daily trips, with 56 new vehicle trips (13 entering, 43 exiting) during the weekday morning peak hour and 66 new vehicle trips (42 entering, 24 exiting) during the weekday evening peak hour.
- Motor vehicle crash records indicate that the crash rates of intersections within the Project study area are below the MassDOT District 3 average. A total of seven crashes were reported at the study intersections between 2017 and 2021, all of which occurred at the intersection of Fitchburg Road, Groton School Road, and Park Street.
- Compared to the Existing and No-Build conditions, the unsignalized intersections in the Project study area are expected to operate at similar levels of service under the Build conditions.

BSC recommends that the Project proponent implement Transportation Demand Management (TDM) strategies, such as:

- Posting 'No Idling' signage in parking areas
- Providing bicycle racks
- Encouraging residents to use the MBTA commuter rail by providing schedule information for the Ayer transit station

In conclusion, it is the opinion of BSC that the vehicle trips generated by the Project can be accommodated at the study area intersections and roadways. As MassDOT roadway improvement plans for Fitchburg Road develop, BSC recommends that the Town, with input by the Project proponent, coordinate with MassDOT to foster pedestrian sidewalk improvements along Fitchburg Road for connectivity to nearby destinations and downtown Ayer.

1 Introduction

BSC Group (BSC) has prepared this Traffic Impact and Access Study (TIAS) to evaluate the potential traffic impacts associated with the proposed construction of a 40B multifamily housing project, known as Ayer Commons, to be located at 65 Fitchburg Road in Ayer, Massachusetts. The development is proposed to consist of 106 residential units spread across multiple buildings.

This study includes a review of existing traffic and roadway conditions in the vicinity of the Project site and the motor vehicle crash history at study area intersections. This report identifies background traffic growth for study area roadways, estimates additional traffic generated by the Project, and evaluates potential traffic impacts due to Project-generated traffic.

The Project is proposed to be constructed in phases, with Phase 1 consisting of the construction of six residential buildings, ranging from two to three stories each, as well as amenities such as a community clubhouse, children's playground and a dog park. Phase 2 of the Project proposes to construct an additional four-story residential building. In total, the Project will provide 106 residential units and approximately 157 parking spaces on site. Access to the site will be provided by a single 24 -foot wide driveway along Fitchburg Road.

The housing development is proposed to be constructed on a site that is currently occupied by several businesses, including a welding business, a tree service company, and a landscaping company.

2 Existing Conditions

The Project site is located at 65 Fitchburg Road in Ayer, Massachusetts, near the Ayer/Shirley town line, which lies to the west. The Town of Groton is located nearby to the north.

Notable locations near the study area include Ayer-Shirley Regional High School to the east and Moore Army Air Field directly to the south. Land uses along Fitchburg Road consist primarily of commercial and manufacturing facilities. The downtown Ayer area is located approximately one mile to the south of the Project location, as well as the Ayer transit station, which provides MBTA commuter rail service via the Fitchburg Line, which terminates at North Station in Boston.

The Project study area includes the nearby roadways and intersections expected to be impacted by the development. This section describes the study area roadways and intersections.

2.1. Study Area

The study area for the traffic impact analysis includes the following intersections:

- Fitchburg Road (Route 2A) at Groton-Shirley Road
- Fitchburg Road at Park Street and Groton School Road (Route 111)

This study area encompasses the intersections that will be used by vehicles traveling between the Project site and local and regional destinations. The proposed study area and site location are shown in Figure 1.

2.2. Existing Roadway Conditions

The site is located along Fitchburg Road, also known as Route 2A, which is classified as an urban principal arterial roadway under the jurisdiction of the Massachusetts Department of Transportation (MassDOT). In the study area, Fitchburg Road generally runs in a northwest-southeast direction. For the purposes of this report, Fitchburg Road will be considered as an east-west oriented roadway. Each travel direction consists of one 12 -foot wide travel lane and shoulder of varying width, typically between 4 to 5 feet. The posted speed limit along Fitchburg Road is 30 to 40 miles per hour.

Near the Project site, no sidewalks are provided along Fitchburg Road. A sidewalk is provided along a portion of the south side of the road, which ends approximately 1,000 feet away from the Project site. There is no curbing provided along Fitchburg Road near the Project site.

Fitchburg Road, looking east

Project Location \& Study Area
65 Fitchburg Road 40B Housing Development
Figure 1
Ayer, Massachusetts
Not to Scale

2.3. Existing Intersection Conditions

The following section describes the geometric conditions and traffic control at the study area intersections. Figure 2 shows the lane geometry and pedestrian crosswalks at the study area intersections.

Fitchburg Road at Groton-Shirley Road
Groton-Shirley Road intersects Fitchburg Road from the north to form an unsignalized Tintersection. Fitchburg Road eastbound and westbound operate freely while the GrotonShirley Road southbound approach is stop controlled. One general purpose lane is provided at each approach. No sidewalks or pedestrian crossings are provided at this intersection.

Fitchburg Road at Groton School Road and Park Street

Fitchburg Road intersects Groton School Road and Park Street to form an unsignalized Yintersection. Fitchburg Road and Park Street operate freely while the Groton School Road southbound approach is stop controlled. In the northbound direction, Park Street provides two approach lanes, both of which may bear left onto Fitchburg Road. The right lane may also continue straight onto Groton School Road. One general purpose lane is provided at the Fitchburg Road eastbound approach and Groton School Road southbound approach. A mast arm at this intersection supports three signal lenses, one for each approach, that continuously flash yellow to urge motorists to use caution.

A pedestrian sidewalk is provided along the west side of Park Street and continues along the south side of Fitchburg Road. A crosswalk is provided across Fitchburg Road at this intersection, but sidewalk does not continue on the north side of this crossing.

Fitchburg Road at Groton-Shirley Road

Fitchburg Road at Groton School Road and Park Street

2.4. Existing Traffic Conditions

2.4.1. Turning Movement Count (TMC) Data

Traffic data was collected on Tuesday June 14, 2022 in the form of peak period turning movement counts (TMCs) at two study area intersections:

- Fitchburg Road (Route 2A) at Groton-Shirley Road
- Fitchburg Road at Park Street and Groton School Road (Route 111)

TMC data collected during the weekday morning and evening peak periods (7:00 - 9:00 AM and 4:00 6:00 PM, respectively) was used to determine traffic patterns during the most critical traffic periods for which the Project will have an impact. Local public schools were in session during the data collection period. The 2022 Existing condition peak hour turning movements are shown in Figure 3.

2.4.2. Automatic Traffic Recorder (ATR) Data

Traffic data was also collected on Tuesday and Wednesday June 14-15, 2022 in the form of a 48-hour weekday automatic traffic recorder (ATR) along Fitchburg Road between the two study area intersections. The ATR gathered volume, vehicle classification, and speed data during the 48 -hour collected period. The volume data collected by the ATR is summarized in Table 1. The complete traffic count data is provided in the Appendix.

Table 1 Automatic Traffic Recorder (ATR) Data Summary

	Fitchburg Road, between GrotonShirley Road and Park Street
Weekday Daily Volume ${ }^{1}$	7,877
Weekday Morning Peak Hour	
Volume ${ }^{2}$	635
K Factor ${ }^{3}$	8.1\%
Directional Flow ${ }^{4}$	75\% EB
Weekday Evening Peak Hour	
Volume	746
K Factor	9.5\%
Directional Flow	70\% WB
vehicles per day vehicles per hour percentage of daily trips tha percentage of peak hour tra	ring the peak hour ection

Table 2 displays the $85^{\text {th }}$ percentile speeds along Fitchburg Road measured by the ATR.
Table 2 Automatic Traffic Recorder (ATR) Speed Summary

	Fitchburg Road, between Groton- Shirley Road and Park Street
$\mathbf{8 5}^{\text {th }}$ Percentile Vehicle Speed	
Eastbound	39 MPH
Westbound	41 MPH

As shown in Table 2, the $85^{\text {th }}$ percentile vehicles speeds along Fitchburg Road were measured to be nearly equal to the posted speed limit of 40 miles per hour. Speeds in the westbound direction were slightly higher than in the eastbound direction.

2.5. Motor Vehicle Crash Data

Motor vehicle crash data were obtained for the Project's study area from the MassDOT crash database for the most recent five-year period (2017-2021). The current MassDOT average crash rate for unsignalized intersections in District 3 is 0.61 crashes per million entering vehicles (mev). Table 3 presents the motor vehicle crash data for the years 2017-2021.

Table 3 Motor Vehicle Crash Data Summary

	Fitchburg Road at Groton-Shirley Road	Fitchburg Road at Groton School Road and Park Street
Total Crashes	0	7
Year		
2017	0	0
2018	0	1
2019	0	2
2020	0	3
2021	0	1
Severity		
Property Damage	0	7
Injury	0	0
Fatality	0	0
Collision Type		
Angle	0	2
Rear End	0	2
Sideswipe	0	0
Single Vehicle	0	2
Head-On	0	1
Time		
7AM - 9AM, Weekday	0	0
4PM - 6PM, Weekday	0	2
Weekday, Off-Peak	0	5
Weekend	0	0
Road Conditions		
Dry	0	6
Wet	0	1
Snow/Ice	0	0
Month		
Dec - Feb	0	1
Mar - May	0	1
June - Aug	0	2
Sept - Nov	0	3
Light Conditions		
Daylight	0	5
Dark	0	2
Dawn/Dusk	0	0
Average Per Year ${ }^{1}$	0.0	1.4
Crash Rate ${ }^{2}$	0.00	0.25

1 Average crashes between 2017-2021
2 Crashes per million entering vehicles, as defined by the MassDOT Highway Division (calculated for 2017 - 2021)
As shown in Table 3, a total of seven crashes were reported at the study intersections between 2017 and 2021, all of which occurred at the intersection of Fitchburg Road, Groton School Road, and Park Street. These crashes consisted of two angle collisions, two rear-ends, two single vehicle crashes, and one headon collision. No collisions were reported at the intersection of Fitchburg Road and Groton-Shirley Road in the last five years. The crash rates at both intersections (0.00 and 0.25 crashes per mev) are lower than the MassDOT District 3 average crash rate of 0.61 crashes per mev for unsignalized intersections. Crash rate worksheets are provided in the Appendix.

3 Future Conditions

Traffic volumes in the study area were projected to the year 2029, which reflects a seven-year traffic planning horizon from the 2022 baseline year. The future traffic volumes consider both general traffic growth trends in the area and new traffic expected to be generated by major planned and proposed developments in the vicinity of the Project. The 2029 No-Build conditions represent a future scenario that incorporates traffic growth and any planned roadway infrastructure projects that will impact traffic volumes in the study area. The Project impacts are analyzed by estimating the number of vehicular trips expected to be generated, distributing through the study area network, and then adding them to the 2029 No-Build conditions. The 2029 Build conditions represent a future scenario that incorporates the expected Projectgenerated trips. The following sections describe the development of the future conditions scenarios.

3.1. No-Build Conditions

3.1.1. Background Growth

A 1.0 percent annual growth rate was applied to the existing conditions traffic volumes to account for background growth within the study area. This growth rate was employed to reflect the annual growth rate that MassDOT has used to grow traffic volumes at a count station along Fitchburg Road in Ayer.

3.1.2. Background Development Projects

Based on discussions with the Town of Ayer, there is one development project proposed in the vicinity of the site that will have an impact on traffic operations. The proposed development is located at 22 Fitchburg Road, which is currently occupied by a supermarket. The supermarket is proposed to be retained, and a new retail strip and auto parts store are proposed to be added to the site. Vehicles may enter and exit the site via two driveways along Fitchburg Road. A trip generation analysis was performed to estimate the traffic volumes generated by the proposed development using data published by the Institute of Transportation Engineers (ITE) in the Trip Generation Manual (11 ${ }^{\text {th }}$ Edition, 2021). The peak hour trip generation impacts of the proposed development at 22 Fitchburg Road are summarized in Table 4.

Address	Size (SF)	Use	ITE LUC	AM Peak Hour			PM Peak Hour		
				Entering	Exiting	Total	Entering	Exiting	Total
22 Fitchburg Road	3,633 SF	Retail Strip	$822{ }^{1}$	5	4	9	12	12	24
	6,889 SF	Auto Parts Store	843^{2}	9	8	17	16	18	34
Total				14	12	26	28	30	58
${ }^{1}$ Based on ITE LUC 822 - Strip Retail Plaza $(<40 \mathrm{k})$${ }^{2}$ Based on ITE LUC 843 - Automobile Parts Sales									

Infrastructure improvements are also proposed along Fitchburg Road as part of MassDOT Project 606640, which is currently in the design phase. This project will resurface a 1.5 -mile stretch of Route 2 A from the Shirley Town line to Brook Street, and also proposes sidewalk improvements and signal upgrades at the intersection of Fitchburg Road, Park Street, and Groton School Road. At the time of this report, the specifics of the project design were not made available.

The background project-generated trips were distributed across the transportation network based on existing traffic patterns. These volumes, along with the 1.0 percent annual growth rate, were applied to the existing traffic volumes to develop the 2029 No-Build traffic volumes that are shown in Figure 4.

3.2. Build Conditions

3.2.1. Trip Generation

To estimate the number of trips generated by the Project, data published by the Institute of Transportation Engineers (ITE) in the Trip Generation Manual (11 ${ }^{\text {th }}$ Edition, 2021) were used. ITE provides data to estimate the total number of unadjusted vehicular trips associated with the Project. The ITE trip generation rates and equations for LUC 220 - Multifamily Housing (Low-Rise) were employed. Table 4 presents the estimated trip generation characteristics of the proposed housing development. Trip generation calculations can be found in the Appendix.

Table 5 Proposed Project-Generated Trips

	$\begin{gathered} \text { \# of } \\ \text { Units } \end{gathered}$	Daily Trips	AM Peak Hour			PM Peak Hour		
			Entering	Exiting	Total	Entering	Exiting	Total
Multifamily Housing (Low- $\text { Rise) - LUC } 220$	106	714	13	43	56	42	24	66

${ }^{1}$ Trip Generation Manual, $11^{\text {th }}$ Edition; Institute of Transportation Engineers; Washington, DC; 2021.
Based on the data provided by ITE, the proposed 106 -unit housing development is expected to generate 714 trips over the course of a weekday with 56 trips during the weekday morning peak hour and 66 trips during the weekday evening peak hour.

It should also be noted that the existing Project site, which is currently occupied by a welding business, a tree service company, and a landscaping company, contributes a certain number of daily and peak hour trips to the study area roadway network. The trip generation characteristics of the existing site were not calculated and subtracted from the Project-generated trips. Thus, the proposed Project-generated trips displayed in Table $\mathbf{5}$ could be considered as a slightly conservative estimate.

3.2.2. Parking Generation

The 106 -unit residential development is proposed to provide 157 parking spaces, or 1.48 spaces per unit. The ITE Parking Generation Manual ($5{ }^{\text {th }}$ Edition, 2019) provides data to estimate the expected parking demand of a development based on land use and size. For LUC 220 - Multifamily Housing (Low-Rise), the average parking demand rate is 1.21 spaces per unit and the $85^{\text {th }}$ percentile rate is 1.52 spaces per unit. The proposed parking ratio of 1.48 spaces per unit is comparable to the ITE $85^{\text {th }}$ percentile rate of 1.52 , and therefore should be sufficient to satisfy the parking demand of the Project.

3.2.3. Trip Distribution

Vehicular trip distribution patterns identify the origins and destinations for trips related to the Project site. Trip distribution patterns for the commuter peak periods were identified using United States Census Journey-to-Work data for residents living in the Town of Ayer. Since the majority of the trips during the weekday morning and evening peak hours are assumed to be work-based commuter trips, this is the most appropriate methodology for determining overall trip distribution patterns for the Project. The trip distribution patterns are shown in Figure 5.

The Project-generated trips were assigned to the study area roadways and intersections based on the trip distribution patterns and are presented in Figure 6 for the weekday morning and evening peak hours. The Project-generated trips were then added to the 2029 No-Build conditions traffic volumes to develop the 2029 Build conditions traffic volumes and are shown in Figure 7.

Weekday Peak Hour Project-Generated Traffic Volumes	Figure 6
65 Fitchburg Road 40B Housing Development	Not to Scale
Ayer, Massachusetts	BSC GROUP

2029 Future Build Weekday Peak Hour Traffic Volumes	Figure 7
65 Fitchburg Road 40B Housing Development	Not to Scale
Ayer, Massachusetts	BSC GROUP

4 Traffic Operations Analysis

4.1. Level of Service

To assess the quality of traffic flow, capacity analyses were conducted at the study area intersections for the weekday morning and weekday evening peak hours. Analyses were conducted using the Synchro 11 traffic analysis software, which is based on methods defined in the Highway Capacity Manual 2010. Operations analyses were conducted for the 2022 Existing, 2029 No-Build, and 2029 Build conditions.

A primary result of capacity analyses is the assignment of a Level of Service (LOS) to traffic facilities under various traffic flow conditions. Six Levels of Services are defined for each type of facility. They are given letter designations from A to F, with LOS A representing the best operating conditions with little delay and LOS F representing the worst, with the most delay.

The average delay per vehicle approaching an intersection is used to quantify the LOS at a particular intersection. The LOS designations are defined below in Table 6. Average delay measures the mean stopped delay experienced by vehicles entering an intersection during the analysis period. Average delay is measured for each individual turning movement that must yield the right of way and for the intersection as a whole, if signalized. The vehicular queues and volume-to-capacity ratios (v / c) are also presented as part of the traffic operations analysis. The $95^{\text {th }}$ percentile queues represent the back of queue during a cycle that experiences the maximum traffic volume during the peak hour. This distinction is made to reflect the random nature of traffic throughout the course of the peak hour. The v / c ratios reflect the percentage of the overall operating capacity of a movement that the traffic volumes consume. A v/c ratio below 1.0 indicates that there is additional capacity that could be used if traffic volumes increase.

Table 6 Level of Service Designations

	Delay (seconds per vehicle)	
Level of Service	Unsignalized	Signalized
A	$0.0-10.0$	$0.0-10.0$
B	$>10.0-15.0$	$>10.0-20.0$
C	$>15.0-25.0$	$>20.0-35.0$
D	$>25.0-35.0$	$>35.0-55.0$
E	$>35.0-50.0$	$>55.0-80.0$
F	>50.0	>80.0

Source: Transportation Research Board, Highway Capacity Manual,
National Research Council, 2010.

Tables 7 and 8 show the operating conditions of the study intersections during the weekday morning and weekday evening peak hours for the three scenarios analyzed. Detailed Synchro reports for each scenario are contained in the Appendix.

At the unsignalized intersection of Fitchburg Road and Groton-Shirley Road, the Groton-Shirley Road southbound approach currently operates at an overall LOS B during the weekday morning and evening peak hour periods. Under the No-Build and Build conditions, this approach is expected to remain at overall LOS B during both peak hour periods.

At the unsignalized intersection of Fitchburg Road, Groton School Road, and Park Street, the Groton School Road currently operates at an overall LOS F during the weekday morning and evening peak periods. Under the No-Build and Build conditions, this approach is expected to remain at overall LOS F during both peak hour periods.

When compared to the No-Build conditions, the delay for the Groton School Road southbound approach under the Build conditions is estimated to increase by approximately 32 seconds and 46 seconds during the weekday morning and evening peak periods, respectively. As presented in the Trip Generation section of this report, the proposed Project is expected to add just two (2) and five (5) trips to the Groton School Road southbound approach during the weekday morning and evening peak hour periods, respectively.
A site visit was conducted to observe traffic operations during a weekday afternoon at the intersection of Fitchburg Road, Park Street, and Groton School Road. The stop-controlled southbound approach was not observed to experience as significant queuing as estimated by the Synchro traffic operations model, and queues exceeding more than just a few vehicles were not frequently observed. BSC believes the delay and queuing estimated by the traffic model may be conservative for the Groton School Road southbound approach.

Table 7 Traffic Operations Analysis Summary - Weekday Morning Peak Hour

Table 8 Traffic Operations Analysis Summary - Weekday Evening Peak Hour

	2019 Existing Conditions				2029 No-Build Conditions				2029 Build Conditions			
	Delay	LOS	v/c	$\begin{gathered} \hline \text { 95th } \\ \text { queue } \\ \hline \end{gathered}$	Delay	LOS	v/c	$\begin{gathered} \hline \text { 95th } \\ \text { queue } \\ \hline \end{gathered}$	Delay	LOS	v / c	$\begin{gathered} 95 \text { th } \\ \text { queue } \\ \hline \end{gathered}$
UNSIGNALIZED INTERSECTIONS Fitchburg Road at Groton-Shirley Road Fitchburg Road EB L/T	1.5	A	0.03	2	1.5	A	0.03	3	1.5	A	0.03	3
Fitchburg Road WB T/R	0.0	A	0.32	0	0.0	A	0.35	0	0.0	A	0.35	0
Groton-Shirley Road SB L/R	13.1	B	0.12	10	13.9	B	0.14	12	14.1	B	0.14	12
Fitchburg Road at Groton School Road and Park Street												
Fitchburg Road EB L/R	1.2	A	0.03	3	1.4	A	0.04	3	1.6	A	0.05	4
Park Street NB L/T	0.0	A	0.57	0	0.0	A	0.62	0	0.0	A	0.64	0
Groton School Road SB T/R	66.3	F	0.83	161	137.9	F	1.08	251	184.2	F	1.20	292

Ayer Commons 40B Housing Project - 65 Fitchburg Road, Ayer, Massachusetts
Traffic Impact and Access Study

4.2. Transportation Demand Management Strategies

Table 9 summarizes various proposed transportation demand management mitigation measures to be implemented. These strategies are meant to reduce single occupancy vehicle trips in and out of the site. Measures are to be handled by the proponent of the development.

Table 9 Transportation Demand Management Strategies

Mitigation Description

General TDM support	- Development management shall serve as a transportation coordinator
Parking management	- Post 'No Idling' signage in parking areas - Provide bicycle racks on site
Public transit service	- Proponent should encourage alternative modes of transportation by providing commuter rail schedule information for the Ayer transit station

BSC also recommends that the Project proponent should consider the installation of electric vehicle charging stations in the future.

In addition to the TDM strategies summarized in Table 9, the Town should work with MassDOT to extend the existing sidewalk along Fitchburg Road from where it currently ends at the Shop'n Save supermarket. The proposed MassDOT Project 606640 will resurface a 1.5 -mile stretch of Route 2A from the Shirley Town line to Brook Street. This project, which is in the design phase, also proposes sidewalk improvements along Fitchburg Road. The Project proponent and the Town should coordinate with MassDOT to provide sidewalk connections to the site and a pedestrian crossing in the vicinity of the site, if not already proposed in the MassDOT design.

5 Summary and Conclusions

BSC has prepared this Traffic Impact and Access Study (TIAS) to evaluate the potential traffic impacts associated with the proposed construction of a 40B multifamily housing project, known as Ayer Commons, to be located at 65 Fitchburg Road in Ayer, Massachusetts. The development is proposed to consist of 106 residential units spread across multiple buildings.

Using standard industry practices, this Traffic Impact and Access Study has reviewed existing traffic and roadway conditions in the vicinity of the site; determined background traffic growth for the study area; and estimated and distributed the additional vehicular traffic that will be generated by the Project.

This study has shown that:

- The proposed 106 -unit housing development project is expected to generate up to approximately 714 new weekday daily trips, with 56 new vehicle trips (13 entering, 43 exiting) during the weekday morning peak hour and 66 new vehicle trips (42 entering, 24 exiting) during the weekday evening peak hour.
- Motor vehicle crash records indicate that the crash rates of intersections within the Project study area are below the MassDOT District 3 average. A total of seven crashes were reported at the study intersections between 2017 and 2021, all of which occurred at the intersection of Fitchburg Road, Groton School Road, and Park Street.
- Compared to the Existing and No-Build conditions, the unsignalized intersections in the Project study area are expected to operate at similar levels of service under the Build conditions.
- Traffic and environmental impacts of the proposed development may be mitigated by implementing TDM strategies can be implemented to reduce the number of single occupancy vehicle trips to and from the site. Specific TDM strategies to be employed include posting 'No Idling' signage, provision of bicycle racks, and promoting the use of the MBTA Commuter Rail.

In conclusion, it is the opinion of BSC that the vehicle trips generated by the Project can be accommodated at the study area intersections and roadways. As MassDOT roadway improvement plans for Fitchburg Road develop, BSC recommends that the Town, with input by the Project proponent, coordinate with MassDOT to foster pedestrian sidewalk improvements along Fitchburg Road for connectivity to nearby destinations and downtown Ayer.

Technical Appendix

Traffic Count Data
Motor Vehicle Crash Rate Worksheets
Trip Generation Calculations
Traffic Operations Analysis

Traffic Count Data

Street
Street 2 :
Count Date:
Day of Week:
Weather:

$$
6 / 14 / 2022
$$

7fice, Framingham,

Tuesday

$$
\text { Clouds \& Sun, } 70^{\circ} \mathrm{F}
$$

DataRequest@BostonTrafficData.com www.BostonTrafficData.com

PASSENGER CARS \& HEAVY VEHICLES COMBINED

Park Street
Park Street
Northbound

Groton School Road
Southbound

Westbound

Eastbound
Earg Road

Left	Thru	Right
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0

Park Street

	Park Street Northbound					Groton School Road Southbound		
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	R
4:00 PM	0	120	62	0	0	0	37	
4:15 PM	0	142	68	0	0	0	53	
4:30 PM	0	154	86	0	0	0	41	
4:45 PM	0	142	84	0	0	0	32	
5:00 PM	0	132	96	0	0	0	39	
5:15 PM	0	147	76	0	0	0	37	
5:30 PM	0	121	74	0	0	0	38	
5:45 PM	0	89	52	0	0	0	35	

Groton School Road
Southbound

AM PEAK HOUR 7:15 AM	Park Street Northbound				Groton School Road Southbound				Fitchburg Road Eastbound				Westbound			
to	U-Turn	Left	Thru	Right												
8:15 AM	0	193	162	0	0	0	240	13	0	21	0	473	0	0	0	0
PHF	0.86				0.79				0.91				0.00			
HV\%	0.0\%	6.7\%	6.8\%	0.0\%	0.0\%	0.0\%	4.2\%	15.4\%	0.0\%	14.3\%	0.0\%	3.0\%	0.0\%	0.0\%	0.0\%	0.0\%

PM PEAK HOUR $4: 15 \text { PM }$	Park Street Northbound				Groton School Road Southbound					Fitchburg Road Eastbound		Westbound				
to	U-Turn	Left	Thru	Right												
5:15 PM	0	570	334	0	0	0	165	17	0	22	0	247	0	0	0	0
PHF	0.94				0.75				0.84				0.00			
HV\%	0.0\%	2.8\%	2.1\%	0.0\%	0.0\%	0.0\%	1.2\%	0.0\%	0.0\%	0.0\%	0.0\%	2.4\%	0.0\%	0.0\%	0.0\%	0.0\%

Client:
Project \#:
BTD \#:
Location:
Street 1:
Street 2:
Count Date:
Day of Week:
Weather:

Knowles Spofford
974_001_BSC
Location 1
Ayer, MA
Fitchburg Road
Park Street/Groton School Road

$$
6 / 14 / 2022
$$

Tuesday
Clouds \& Sun, $70^{\circ} \mathrm{F}$

PO BOX 1723, Framingham, MA 01701
Office: 978-746-1259
DataRequest@BostonTrafficData.com www.BostonTrafficData.com

		HEAVY VEHICLES														
		Park Street Northbound		Groton School Road Southbound						Fitchburg Road Eastbound		Westbound				
Start Time	U-Turn	Left	Thru	Right												
7:00 AM	0	0	2	0	0	0	1	0	0	2	0	8	0	0	0	0
7:15 AM	0	2	4	0	0	0	2	1	0	1	0	3	0	0	0	0
7:30 AM	0	5	1	0	0	0	3	1	0	0	0	6	0	0	0	0
7:45 AM	0	2	3	0	0	0	4	0	0	0	0	2	0	0	0	0
8:00 AM	0	4	3	0	0	0	1	0	0	2	0	3	0	0	0	0
8:15 AM	0	1	5	0	0	0	5	0	0	0	0	3	0	0	0	0
8:30 AM	0	7	2	0	0	0	1	0	0	0	0	3	0	0	0	0
8:45 AM	0	7	1	0	0	0	0	1	0	0	0	5	0	0	0	0

Park Street Northbound						Groton School Road Southbound				Fitchburg Road Eastbound		Westbound				
Start Time	U-Turn	Left	Thru	Right												
4:00 PM	0	4	0	0	0	0	3	0	0	0	0	3	0	0	0	0
4:15 PM	0	6	1	0	0	0	1	0	0	0	0	2	0	0	0	0
4:30 PM	0	6	3	0	0	0	1	0	0	0	0	3	0	0	0	0
4:45 PM	0	3	2	0	0	0	0	0	0	0	0	1	0	0	0	0
5:00 PM	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	2	2	0	0	0	1	0	0	0	0	0	0	0	0	0
5:30 PM	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0
5:45 PM	0	3	2	0	0	0	1	0	0	0	0	1	0	0	0	0

Client: Knowles Spofford
Project \#: 974_001_BSC
BTD \#: Location 1
Location:
Street 1:
Street 2:
Count Date:
Day of Week:
Weather:

Ayer, MA
Fitchburg Road
Park Street/Groton School Road
6/14/2022
Tuesday
Clouds \& Sun, $70^{\circ} \mathrm{F}$

BOSTON

TRAFFIC DATA
PO BOX 1723, Framingham, MA 01701 Office: 978-746-1259
DataRequest@BostonTrafficData.com
www.BostonTrafficData.com

PEDESTRIANS \& BICYCLES

Groton School Road Fitchburg Road

Park Street Northbound					Groton School Road Southbound					Fitchburg Road Eastbound		Westbound				
Start Time	Left	Thru	Right	PED												
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Groton School Road
Southbound

Park Street Northbound					Groton School Road Southbound					Fitchburg Road Eastbound		Westbound				
Start Time	Left	Thru	Right	PED												
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	2	0	0	0	0	0	0	0	0	0	2	0	0	0	0
4:30 PM	1	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
5:15 PM	1	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0

AM PEAK HOUR $7: 15 \mathrm{AM}$ to	Park Street Northbound			Groton School Road Southbound						Fitchburg Road Eastbound		Westbound				
	Left	Thru	Right	PED												
8:15 AM	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0

$\begin{array}{\|c} \text { PM PEAK HOUR }^{1} \\ \text { 4:15 PM } \\ \text { to } \\ 5: 15 \mathrm{PM} \end{array}$	Park Street Northbound				Groton School Road Southbound					Fitchburg Road Eastbound			Westbound			
	Left	Thru	Right	PED												
	1	3	0	0	0	0	0	0	0	0	3	2	0	0	0	0

[^0]Client:
Project \#:
BTD \#:
Location:
Street 1:
Street 2:
Count Date:
Day of Week:
Weather:

Knowles Spofford
974_001_BSC
Location 2
Ayer, MA
Fitchburg Road
Groton-Shirley Road

$$
6 / 14 / 2022
$$

Tuesday
Clouds \& Sun, $70^{\circ} \mathrm{F}$

PO BOX 1723, Framingham, MA 0170
Office: 978-746-1259
DataRequest@BostonTrafficData.com www.BostonTrafficData.com

Northbound						Groton-Shirley Road Southbound				Fitchburg Road Eastbound			Fitchburg Road Westbound			
Start Time	U-Turn	Left	Thru	Right												
7:00 AM	0	0	0	0	0	1	0	3	0	6	98	0	0	0	21	2
7:15 AM	0	0	0	0	0	1	0	2	1	5	124	0	0	0	33	2
7:30 AM	0	0	0	0	0	2	0	4	0	10	132	0	0	0	31	0
7:45 AM	0	0	0	0	0	1	0	3	0	11	108	0	0	0	39	0
8:00 AM	0	0	0	0	0	2	0	2	0	5	90	0	0	0	29	1
8:15 AM	0	0	0	0	0	1	0	4	0	9	81	0	0	0	36	2
8:30 AM	0	0	0	0	0	0	0	3	0	7	65	0	0	0	45	0
8:45 AM	0	0	0	0	0	0	0	2	0	11	68	0	0	0	37	2

Northbound					Groton-Shirley Road Southbound					Fitchburg Road Eastbound				Fitchburg Road Westbound		
Start Time	U-Turn	Left	Thru	Right												
4:00 PM	0	0	0	0	0	2	0	15	0	9	40	0	0	0	112	3
4:15 PM	0	0	0	0	0	1	0	11	0	8	44	0	0	0	139	2
4:30 PM	0	0	0	0	0	1	0	11	0	4	46	0	0	0	131	2
4:45 PM	0	0	0	0	0	2	0	11	0	7	36	0	0	0	117	1
5:00 PM	0	0	0	0	0	2	0	4	0	5	29	0	0	0	124	1
5:15 PM	0	0	0	0	0	0	0	4	0	2	38	0	0	0	124	4
5:30 PM	0	0	0	0	0	0	0	12	0	10	38	0	0	0	119	2
5:45 PM	0	0	0	0	0	1	0	2	0	6	40	0	0	0	80	3

$\begin{gathered} \text { AM PEAK HOUR } \\ \text { 7:00 AM } \end{gathered}$	Northbound				Groton-Shirley Road Southbound					Fitchburg Road Eastbound			Fitchburg Road Westbound			
to	U-Turn	Left	Thru	Right												
8:00 AM	0	0	0	0	0	5	0	12	1	32	462	0	0	0	124	4
$\begin{gathered} \text { PHF } \\ H V \% \end{gathered}$	0.00				0.71				0.87				0.82			
	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	20.0\%	0.0\%	0.0\%	0.0\%	3.1\%	3.2\%	0.0\%	0.0\%	0.0\%	8.1\%	0.0\%
$\begin{gathered} \text { PM PEAK HOUR } \\ \text { 4:00 PM } \end{gathered}$	N- Northbound				Groton-Shirley Road Southbound				Fitchburg Road Eastbound				Fitchburg Road Westbound			
to	U-Turn	Left	Thru	Right												
5:00 PM	0	0	0	0	0	6	0	48	0	28	166	0	0	0	499	8
PHF	0.00				0.79				0.93				0.90			
HV\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	4.2\%	0.0\%	0.0\%	4.8\%	0.0\%	0.0\%	0.0\%	4.0\%	0.0\%

Client:
Project \#:
BTD \#:
Location:
Street 1:
Street 2:
Count Date:
Day of Week:
Weather:

Knowles Spofford
974_001_BSC
Location 2
Ayer, MA
Fitchburg Road
Groton-Shirley Road

$$
6 / 14 / 2022
$$

Tuesday
Clouds \& Sun, $70^{\circ} \mathrm{F}$

PO BOX 1723, Framingham, MA 01701
Office: 978-746-1259
DataRequest@BostonTrafficData.com www.BostonTrafficData.com

Northbound					Groton-Shirley Road Southbound					Fitchburg Road Eastbound			Fitchburg Road Westbound			
Start Time	U-Turn	Left	Thru	Right												
4:00 PM	0	0	0	0	0	0	0	1	0	0	2	0	0	0	4	0
4:15 PM	0	0	0	0	0	0	0	1	0	0	2	0	0	0	6	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	8	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0
5:00 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	4	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0
5:30 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	3	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	3	0

$\begin{gathered} \text { AM PEAK HOUR } \\ \text { 7:00 AM } \end{gathered}$	Northbound				Groton-Shirley Road Southbound				Fitchburg Road Eastbound				Fitchburg Road Westbound			
to	U-Turn	Left	Thru	Right												
8:00 AM	0	0	0	0	0	1	0	0	0	1	15	0	0	0	10	0
PHF	0.00				0.25				0.50				0.63			
$\begin{gathered} \text { PM PEAK HOUR } \\ \text { 4:00 PM } \end{gathered}$	Northbound				Groton-Shirley Road Southbound				Fitchburg Road Eastbound				Fitchburg Road Westbound			
to					U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right
5:00 PM	0	0	0	0	0	0	0	2	0	0	8	0	0	0	20	0
PHF	0.00				0.50				0.50				0.63			

Client: Knowles Spofford
Project \#: 974_001_BSC
BTD \#: Location 2
Location: Ayer, MA
Street 1: Fitchburg Road
Street 2:
Count Date:
Day of Week:
Weather:

Groton-Shirley Road

$$
6 / 14 / 2022
$$

Tuesday
Clouds \& Sun, $70^{\circ} \mathrm{F}$

BOSTON
 TRAFFIC DATA
 PO BOX 1723, Framingham, MA 01701
 $$
\text { Office: } 978-746-1259
$$

 Office: 978-746-1259

 Office: 978-746-1259
 DataRequest@BostonTrafficData.com
 www.BostonTrafficData.com

PEDESTRIANS \& BICYCLES

Groton-Shirley Road
Fitchburg Road
Fitchburg Road

Northbound					Groton-Shirley Road Southbound					Fitchburg Road Eastbound				Fitchburg Road Westbound		
Start Time	Left	Thru	Right	PED												
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Groton-Shirley Road
Fitchburg Road
Fitchburg Road

Northbound					Groton-Shirley Road Southbound					Fitchburg Road Eastbound			Fitchburg Road Westbound			
Start Time	Left	Thru	Right	PED												
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	2	0	0	0	3	0	0	0	0	0	0	0

$\begin{array}{\|c} \text { AM PEAK HOUR }^{\mathbf{1}} \\ 7: 00 \mathrm{AM} \end{array}$						$\begin{array}{r} \text { Dton- } \\ \text { Sou } \\ \hline \end{array}$	ey Ro und			Fitch	Road und			Fitch W	Road und	
to	Left	Thru	Right	PED												
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

$\begin{gathered} \text { PM PEAK HOUR }^{1} \\ 4: 00 \mathrm{PM} \end{gathered}$	Northbound				Groton-Shirley Road Southbound				Fitchburg Road Eastbound				Fitchburg Road Westbound			
to	Left	Thru	Right	PED												
5:00 PM	0	0	0	0	0	0	0	0	0	2	0	0	0	1	0	0

[^1]
Motor Vehicle Crash Rate Worksheets

INTERSECTION CRASH RATE WORKSHEET

CITY/TOWN				COUNT DATE :	2022
DISTRICT	3	UNSIGNALIZED :	X	SIGNALIZE	

~ INTERSECTION DATA ~
MAJOR STREET : Fitchburg Road
MINOR STREET(S): Groton School Road
Park Street

	PEAK HOUR VOLUMES					
APPROACH:	1	2	3	4	5	Total Peak Hourly
DIRECTION :	EB	NB	SB			Approach Volume
PEAK HOURLY VOLUMES (AM/PM) :	269	904	182			1,355
" K " FACTOR	0.090	INTE	$\begin{aligned} & \text { ION } \\ & \text { PRRO } \end{aligned}$	$\begin{aligned} & (\mathbf{V})=\mathrm{T} \\ & \text { I VOLUN } \end{aligned}$		15,056
TOTAL \# OF CRASHES	7	$\begin{gathered} \text { \# OF } \\ \text { YEARS } \end{gathered}$	5	$\begin{array}{r} \text { AVE } \\ \text { CRASH } \end{array}$	OF YEAR (1.40

CRASH RATE CALCULATION :

0.25

RATE $=\frac{(A * 1,000,000)}{(V * 365)}$
Comments : \qquad
Project Title \& Date: \qquad

Trip Generation Calculations

Land Use: 220 Multifamily Housing (Low-Rise)

Description

Low-rise multifamily housing includes apartments, townhouses, and condominiums located within the same building with at least three other dwelling units and that have two or three floors (levels). Various configurations fit this description, including walkup apartment, mansion apartment, and stacked townhouse.

- A walkup apartment typically is two or three floors in height with dwelling units that are accessed by a single or multiple entrances with stairways and hallways.
- A mansion apartment is a single structure that contains several apartments within what appears to be a single-family dwelling unit.
- A fourplex is a single two-story structure with two matching dwelling units on the ground and second floors. Access to the individual units is typically internal to the structure and provided through a central entry and stairway.
- A stacked townhouse is designed to match the external appearance of a townhouse. But, unlike a townhouse dwelling unit that only shares walls with an adjoining unit, the stacked townhouse units share both floors and walls. Access to the individual units is typically internal to the structure and provided through a central entry and stairway.

Multifamily housing (mid-rise) (Land Use 221), multifamily housing (high-rise) (Land Use 222), affordable housing (Land Use 223), and off-campus student apartment (low-rise) (Land Use 225) are related land uses.

Land Use Subcategory

Data are presented for two subcategories for this land use: (1) not close to rail transit and (2) close to rail transit. A site is considered close to rail transit if the walking distance between the residential site entrance and the closest rail transit station entrance is $1 / 2$ mile or less.

Additional Data

For the three sites for which both the number of residents and the number of occupied dwelling units were available, there were an average of 2.72 residents per occupied dwelling unit.

For the two sites for which the numbers of both total dwelling units and occupied dwelling units were available, an average of 96.2 percent of the total dwelling units were occupied.

The technical appendices provide supporting information on time-of-day distributions for this land use. The appendices can be accessed through either the ITETripGen web app or the trip
generation resource page on the ITE website (https://www.ite.org/technical-resources/topics/trip-and-parking-generation/).

For the three sites for which data were provided for both occupied dwelling units and residents, there was an average of 2.72 residents per occupied dwelling unit.

It is expected that the number of bedrooms and number of residents are likely correlated to the trips generated by a residential site. To assist in future analysis, trip generation studies of all multifamily housing should attempt to obtain information on occupancy rate and on the mix of residential unit sizes (i.e., number of units by number of bedrooms at the site complex).

The sites were surveyed in the 1980s, the 1990s, the 2000s, the 2010s, and the 2020s in British Columbia (CAN), California, Delaware, Florida, Georgia, Illinois, Indiana, Maine, Maryland, Massachusetts, Minnesota, New Jersey, Ontario (CAN), Oregon, Pennsylvania, South Carolina, South Dakota, Tennessee, Texas, Utah, and Washington.

Source Numbers

188, 204, 237, 300, 305, 306, 320, 321, 357, 390, 412, 525, 530, 579, 583, 638, 864, 866, 896, 901, $903,904,936,939,944,946,947,948,963,964,966,967,1012,1013,1014,1036,1047,1056$, 1071, 1076

Multifamily Housing (Low-Rise) Not Close to Rail Transit (220)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday

Setting/Location: General Urban/Suburban

Number of Studies: 22
Avg. Num. of Dwelling Units: 229
Directional Distribution: 50% entering, 50% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
6.74	$2.46-12.50$	1.79

Data Plot and Equation

Multifamily Housing (Low-Rise) Not Close to Rail Transit (220)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 49
Avg. Num. of Dwelling Units: 249
Directional Distribution: 24% entering, 76% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.40	$0.13-0.73$	0.12

Data Plot and Equation

Multifamily Housing (Low-Rise) Not Close to Rail Transit (220)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 59
Avg. Num. of Dwelling Units: 241
Directional Distribution: 63\% entering, 37\% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.51	$0.08-1.04$	0.15

Data Plot and Equation

Land Use: 822
 Strip Retail Plaza (<40k)

Description

A strip retail plaza is an integrated group of commercial establishments that is planned, developed, owned, and managed as a unit. Each study site in this land use has less than 40,000 square feet of gross leasable area (GLA). Because a strip retail plaza is open-air, the GLA is the same as the gross floor area of the building.

The 40,000 square feet GFA threshold between strip retail plaza and shopping plaza (Land Use 821) was selected based on an examination of the overall shopping center/plaza database. No shopping plaza with a supermarket as its anchor is smaller than 40,000 square feet GLA.

Shopping center (>150k) (Land use 820), shopping plaza (40-150k) (Land Use 821), and factory outlet center (Land Use 823) are related uses.

Additional Data

The technical appendices provide supporting information on time-of-day distributions for this land use. The appendices can be accessed through either the ITETripGen web app or the trip generation resource page on the ITE website (https://www.ite.org/technical-resources/topics/trip-and-parking-generation/).

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in Alberta (CAN), California, Delaware, Florida, New Jersey, Ontario (CAN), South Dakota, Vermont, Washington, and Wisconsin.

Source Numbers

$304,358,423,428,437,507,715,728,936,960,961,974,1009$

Strip Retail Plaza (<40k) (822)

Vehicle Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday

Setting/Location: General Urban/Suburban

Number of Studies: 4
Avg. 1000 Sq. Ft. GLA: 19
Directional Distribution: 50\% entering, 50\% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GLA

Average Rate	Range of Rates	Standard Deviation
54.45	$47.86-65.07$	7.81

Data Plot and Equation

Strip Retail Plaza (<40k) (822)

Vehicle Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 5
Avg. 1000 Sq. Ft. GLA: 18
Directional Distribution: 60\% entering, 40% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GLA

Average Rate	Range of Rates	Standard Deviation
2.36	$1.60-3.73$	0.94

Data Plot and Equation

Strip Retail Plaza (<40k) (822)

Vehicle Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 25
Avg. 1000 Sq. Ft. GLA: 21
Directional Distribution: 50% entering, 50% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GLA

Average Rate	Range of Rates	Standard Deviation
6.59	$2.81-15.20$	2.94

Data Plot and Equation

Land Use: 843
 Automobile Parts Sales

Description

An automobile parts sales facility specializes in the sale of automobile parts for maintenance and repair. The facilities within this land use are not typically equipped for on-site vehicle repair. Tire store (Land Use 848), tire superstore (Land Use 849), and automobile parts and service center (Land Use 943) are related uses.

Additional Data

The technical appendices provide supporting information on time-of-day distributions for this land use. The appendices can be accessed through either the ITETripGen web app or the trip generation resource page on the ITE website (https://www.ite.org/technical-resources/topics/trip-and-parking-generation/).

The sites were surveyed in the 1990s, the 2000s, and the 2010s in Alberta (CAN), Florida, Montana, New Hampshire, Texas, and Wisconsin.

Source Numbers

$436,439,618,881,882,959,975,1047$

Automobile Parts Sales
 (843)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban

Number of Studies: 14
Avg. 1000 Sq. Ft. GFA: 8
Directional Distribution: 50\% entering, 50% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
54.57	$15.38-90.41$	20.19

Data Plot and Equation

Automobile Parts Sales
 (843)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 14
Avg. 1000 Sq. Ft. GFA: 8
Directional Distribution: 55\% entering, 45% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
2.51	$1.02-7.58$	1.62

Data Plot and Equation

Automobile Parts Sales
 (843)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 16
Avg. 1000 Sq. Ft. GFA: 8
Directional Distribution: 48\% entering, 52% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
4.90	$1.36-7.65$	2.17

Data Plot and Equation

Traffic Operations Analysis

Lane Group	$\begin{aligned} & \boldsymbol{y} \\ & \text { EBL } \end{aligned}$	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		\uparrow	\uparrow		*			
Traffic Volume (vph)	21	473	193	162	240	13		
Future Volume (vph)	21	473	193	162	240	13		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Link Speed (mph)		30	30		30			
Link Distance (ft)		393	363		1467			
Travel Time (s)		8.9	8.3		33.3			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Heavy Vehicles (\%)	14\%	3\%	7\%	7\%	4\%	15\%		
Shared Lane Traffic (\%)								
Lane Group Flow (vph)	0	537	386	0	275	0		
Sign Control		Free	Free		Stop			
Intersection Summary								
Area Type:	Other							
Control Type: Unsignalized								
Intersection Capacity Utilization 62.7\%				ICU Level of Service B				
Analysis Period (min) 15								

Movement	y EBL	$\underset{\text { EBT }}{\rightarrow}$	WBT	4 WBR	SBL	SBR	
Lane Configurations		\uparrow	\uparrow		\%		
Traffic Volume (veh/h)	21	473	193	162	240	13	
Future Volume (Veh/h)	21	473	193	162	240	13	
Sign Control		Free	Free		Stop		
Grade		0\%	0\%		0\%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	23	514	210	176	261	14	
Pedestrians							
Lane Width (tt)							
Walking Speed (fts)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (ti)							
pX , platoon unblocked							
vC , conficicing volume	386				858	298	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	386				858	298	
tC, single (s)	4.2				6.4	6.4	
$\mathrm{tC}, 2$ stage (s)							
tF (s)	2.3				3.5	3.4	
po queue free \%	98				18	98	
cM capacity (veh/h)	1110				318	712	
Direction, Lane \#	EB 1	WB 1	SB 1				
Volume Total	537	386	275				
Volume Left	23	0	261				
Volume Right	0	176	14				
cSH	1110	1700	327				
Volume to Capacity	0.02	0.23	0.84				
Queue Length 95th (tt)	2	0	185				
Control Delay (s)	0.6	0.0	54.0				
Lane LOS	A		F				
Approach Delay (s)	0.6	0.0	54.0				
Approach LOS			F				
Intersection Summary							
Average Delay			12.7				
Intersection Capacity Utilization			62.7\%		Level	ervice	B
Analysis Period (min)			15				

Movement	EBL	$\begin{aligned} & \rightarrow \\ & { }_{E B T} \end{aligned}$	WBT	4 WBR	SBL	SBR	
Lane Configurations		\uparrow	$\stackrel{1}{ }$		Y		
Trafic Volume (veh/h)	32	462	124	4	5	12	
Future Volume (Veh/h)	32	462	124	4	5	12	
Sign Control		Free	Free		Stop		
Grade		0\%	0\%		0\%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	35	502	135	4	5	13	
Pedestrians							
Lane Width (tt)							
Walking Speed (fts)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (ti)							
pX , platoon unblocked							
vC , conficicting volume	139				709	137	
vC1, stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu , unblocked vol	139				709	137	
tC, single (s)	4.1				6.6	6.2	
$\mathrm{t}, 2$ 2 stage (s)							
tF (s)	2.2				3.7	3.3	
p0 queue free \%	98				99	99	
cM capacity (veh/h)	1438				366	917	
Direction, Lane\#	EB 1	WB 1	SB 1				
Volume Total	537	139	18				
Volume Left	35	0	5				
Volume Right	0	4	13				
cSH	1438	1700	646				
Volume to Capacity	0.02	0.08	0.03				
Queue Length 95th (tt)	2	0	2				
Control Delay (s)	0.7	0.0	10.7				
Lane LOS	A		B				
Approach Delay (s)	0.7	0.0	10.7				
Approach LOS			B				
Intersection Summary							
Average Delay			0.8				
Intersection Capacity Utilization			46.2\%		Level of	ervice	A
Analysis Period (min)			15				

			EBL	EBT	WBT	WBR	SBL
Lane Group		\rightarrow	SBR				
Lane Configurations	24	517	218	174	258	15	
Traffic Volume (vph)	24	517	218	174	258	15	
Future Volume (vph)	1900	1900	1900	1900	1900	1900	
Ideal Flow (vphpl)		30	30		30		
Link Speed (mph)		393	363		1467		
Link Distance (ft)		8.9	8.3		33.3		
Travel Time (s)	0.92	0.92	0.92	0.92	0.92	0.92	
Peak Hour Factor	14%	3%	7%	7%	4%	15%	
Heavy Vehicles (\%)							
Shared Lane Traffic (\%)	0	588	426	0	296	0	
Lane Group Flow (vph)		Free	Free		Stop		
Sign Control							

Intersection Summary
Intersection Capacity Utilization 68.6\% ICU Level of Service C

Analysis Period (min) 15

Movement	-	$\begin{aligned} & \rightarrow \\ & \mathrm{EBT} \end{aligned}$	WBT	WBR	SBL	SBR	
Lane Configurations		\uparrow	\uparrow		M		
Traffic Volume (veh/h)	24	517	218	174	258	15	
Future Volume (Veh/h)	24	517	218	174	258	15	
Sign Control		Free	Free		Stop		
Grade		0\%	0\%		0\%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	26	562	237	189	280	16	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (ft)							
pX , platoon unblocked							
vC , conflicting volume	426				946	332	
$v C 1$, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu , unblocked vol	426				946	332	
tC, single (s)	4.2				6.4	6.4	
tC, 2 stage (s)							
tF (s)	2.3				3.5	3.4	
p0 queue free \%	98				0	98	
cM capacity (veh/h)	1072				281	681	
Direction, Lane \#	EB 1	WB 1	SB 1				
Volume Total	588	426	296				
Volume Left	26	0	280				
Volume Right	0	189	16				
cSH	1072	1700	290				
Volume to Capacity	0.02	0.25	1.02				
Queue Length 95th (ft)	2	0	273				
Control Delay (s)	0.7	0.0	97.5				
Lane LOS	A		F				
Approach Delay (s)	0.7	0.0	97.5				
Approach LOS			F				
Intersection Summary							
Average Delay			22.3				
Intersection Capacity Utilization			68.6\%	ICU Level of Service			C
Analysis Period (min)			15				

			EBL	EBT	WBT	WBR	SBL
Lane Group		\rightarrow	SBR				
Lane Configurations	29	549	227	174	258	17	
Traffic Volume (vph)	29	549	227	174	258	17	
Future Volume (vph)	1900	1900	1900	1900	1900	1900	
ldeal Flow (vphpl)		30	30		30		
Link Speed (mph)		393	363		1467		
Link Distance (ft)		8.9	8.3		33.3		
Travel Time (s)	0.92	0.92	0.92	0.92	0.92	0.92	
Peak Hour Factor	14%	3%	7%	7%	4%	15%	
Heavy Vehicles (\%)							
Shared Lane Traffic (\%)	0	629	436	0	298	0	
Lane Group Flow (vph)		Free	Free		Stop		
Sign Control							

Intersection Summary

Analysis Period (min) 15

Lane Group	$\begin{aligned} & > \\ & \text { EBL } \end{aligned}$	EBT	$\begin{aligned} & \leftarrow- \\ & \text { WBT } \end{aligned}$	WBR		$\begin{aligned} & 4 \\ & \text { SBR } \end{aligned}$
Lane Configurations		\uparrow	\uparrow		*/	
Traffic Volume (vph)	35	500	139	6	7	13
Future Volume (vph)	35	500	139	6	7	13
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Link Speed (mph)		30	30		30	
Link Distance (ft)		254	1051		367	
Travel Time (s)		5.8	23.9		8.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	3\%	3\%	8\%	0\%	20\%	0\%
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	0	581	158	0	22	0
Sign Control		Free	Free		Stop	

Intersection Summary
Intersection Capacity Utilization 49.3\% ICU Level of Service A

Analysis Period (min) 15

Movement	4 EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		\uparrow	\uparrow		M		
Traffic Volume (veh/h)	35	500	139	6	7	13	
Future Volume (Veh/h)	35	500	139	6	7	13	
Sign Control		Free	Free		Stop		
Grade		0\%	0\%		0\%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	38	543	151	7	8	14	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (ft)							
pX , platoon unblocked							
vC, conflicting volume	158				774	154	
$\mathrm{vC1}$, stage 1 conf vol							
$v C 2$, stage 2 conf vol							
vCu , unblocked vol	158				774	154	
tC, single (s)	4.1				6.6	6.2	
$\mathrm{tC}, 2$ stage (s)							
tF (s)	2.2				3.7	3.3	
p0 queue free \%	97				98	98	
cM capacity (veh/h)	1416				334	897	
Direction, Lane \#	EB 1	WB 1	SB 1				
Volume Total	581	158	22				
Volume Left	38	0	8				
Volume Right	0	7	14				
cSH	1416	1700	556				
Volume to Capacity	0.03	0.09	0.04				
Queue Length 95th (ft)	2	0	3				
Control Delay (s)	0.8	0.0	11.7				
Lane LOS	A		B				
Approach Delay (s)	0.8	0.0	11.7				
Approach LOS			B				
Intersection Summary							
Average Delay			0.9				
Intersection Capacity Utilization			49.3\%	ICU Level of Service			A
Analysis Period (min)			15				

Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	$\hat{\beta}$		H	
Traffic Volume (vph)	29	306	666	359	177	25
Future Volume (vph)	29	306	666	359	177	25
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Link Speed (mph)		30	30		30	
Link Distance (ft)		393	363		1467	
Travel Time (s)		8.9	8.3		33.3	
Peak Hour Factor	0.92	0.92	0.94	0.94	0.92	0.92
Heavy Vehicles (\%)	0\%	2\%	3\%	2\%	1\%	0\%
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	0	365	1091	0	219	0
Sign Control		Free	Free		Stop	
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 74.9\%Analysis Period (min) 15				ICU Level of Service D		

			EBL	EBT	WBT	WBR	SBL
Lane Group		\rightarrow	SBR				
Lane Configurations	31	188	543	10	8	52	
Traffic Volume (vph)	31	188	543	10	8	52	
Future Volume (vph)	1900	1900	1900	1900	1900	1900	
ldeal Flow (vphpl)		30	30		30		
Link Speed (mph)		254	1051		367		
Link Distance (ft)		5.8	23.9		8.3		
Travel Time (s)	0.93	0.93	0.92	0.92	0.92	0.92	
Peak Hour Factor	0%	5%	4%	0%	0%	4%	
Heavy Vehicles (\%)							
Shared Lane Traffic (\%)	0	235	601	0	66	0	
Lane Group Flow (vph)		Free	Free		Stop		
Sign Control							

Intersection Summary
Intersection Capacity Utilization 46.5\% ICU Level of Service A

Analysis Period (min) 15

Movement	-	$\begin{aligned} & \rightarrow \\ & \text { EBT } \end{aligned}$	WBT	WBR	$\begin{gathered} \text { SBL } \\ \text { SB } \end{gathered}$	SBR	
Lane Configurations		\uparrow	\uparrow		M		
Traffic Volume (veh/h)	31	188	543	10	8	52	
Future Volume (Veh/h)	31	188	543	10	8	52	
Sign Control		Free	Free		Stop		
Grade		0\%	0\%		0\%		
Peak Hour Factor	0.93	0.93	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	33	202	590	11	9	57	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (ft)							
pX , platoon unblocked							
vC , conflicting volume	601				864	596	
$\mathrm{vC1}$, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu , unblocked vol	601				864	596	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)							
$\mathrm{tF}(\mathrm{~s})$	2.2				3.5	3.3	
p0 queue free \%	97				97	89	
cM capacity (veh/h)	986				317	500	
Direction, Lane \#	EB 1	WB 1	SB 1				
Volume Total	235	601	66				
Volume Left	33	0	9				
Volume Right	0	11	57				
cSH	986	1700	464				
Volume to Capacity	0.03	0.35	0.14				
Queue Length 95th (ft)	3	0	12				
Control Delay (s)	1.5	0.0	14.1				
Lane LOS	A		B				
Approach Delay (s)	1.5	0.0	14.1				
Approach LOS			B				
Intersection Summary							
Average Delay			1.4				
Intersection Capacity Utilization			46.5\%	ICU Level of Service			A
Analysis Period (min)			15				

[^0]: NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

[^1]: ${ }^{1}$ NOTE: Peak hour summaries here correspond to peak hours identified for passenger cars and heavy vehicles combined.

